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Instability of convection in a fluid layer rotating about an oblique axis
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We analyze thermal convection in a fluid layer confined between isothermal horizontal boundaries at which
the tangential component of the fluid stress vanishes. The layer rotates about an oblique, nearly vertical axis.
Using a model set of equations far, the horizontal planform of the vertical velocity component, anda
stream function related to a large-scale vertical vorticity field, we describe the instabilities of convection rolls.
We show how the usual Kapers-Lortz instability, which leads to a continual precession of the roll pattern, can
be suppressed by the oblique rotation vector. Of particular interest is the small-angle instability of rolls, to
perturbations in the form of rolls that are almost aligned with the primary rolls; at finite Prandtl number, this
instability is not prevented by the horizontal component of the rotation vector, unless this component is
sufficiently strong, in which case stability is confined to small-amplitude rolls near the marginal stability
boundary. A one-dimensional instability leading to amplitude-modulated rolls is unaffected by the oblique
rotation. Numerical simulations of the model equations are presented, which illustrate the instabilities ana-
lyzed.
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[. INTRODUCTION straightforward case of infinite Prandtl number, so that the
large-scale vertical vorticity mode plays no significant role.
Convection in a horizontal fluid |aye|’ rotating about an Our broad conclusion is that.rolls Sufficiently well aligned
oblique axis is the archetypal model problem for convectionwith Q, are stabilized to the Kppers-Lortz instability, pro-
in planetary atmospheres. It also represents an interestir}gde_d |Qy| is sufficiently great. Our results correct those of
pattern formation problem, since the vertical and horizontaR0Xin and Rieck¢12]. o
components of the rotation vect€¥ tend to have competing . WWhen, by contrast, the Prandtl number is finite, the
effects on the stability of convection rolls. First we recall that KUPPers-Lortz instability is more complicated. The usual
the vertical component(2, tends to lead to the Kipers- weakly nonlinear analysis of this instability proceeds by con-

Lortz instability[1,2], which causes convection rolls to pre- sidering a erlmary Se’f, of rolls, with wave vectdko, per-

cess continually about the vertical in the same sens®.as turbed by a sec_ondary set of_rolls, with wave vectay. In :

H thehorizontal 0 tends to lead t | the weakly nonlinear formulation near the onset of motion,
owever, thehorizontal Componenta, tenads 1o 1ead 10 a ,here the Rayleigh numbeR is close to its critical value

preference for rolls whose axes are aligned vikh (see, for

_ , ) R., both|ko| and|k,| are roughly equal to the critical wave
example, Refs[3-7]). In this paper we describe the influ-  mperk_ of the linear stability theory. Provided that the

ence of the competition between these two effects upon th&ngle¢ betweerk, andk, is not near 60° or 120°, the wave
stability of convection rolls, through asymptotic analysis andyectorsk,+k, of the second-order harmonics lie away from
numerical simulation. the circle of critical wave vectors, i.e., they are not resonant,
Of particular interest is the influence of a large-scale verand their amplitudes are slaved to those of the primary and
tical vorticity mode upon the convection, which is investi- secondary rolls. However, when the angleis small, ko
gated here in the analytically tractable case of “ideal” —k,|<k, and the corresponding harmonic generates a large-
boundary conditionéin particular, zero tangential fluid stress scale motior{2]. In the case of stress-free horizontal bound-
at the boundarigs so that the large-scale mode is only aries, as contemplated here, this motion is only weakly
weakly linearly damped. However, this mode is also knowndamped, and so must explicitly be included, together with
to play a significant role when more realistic, rigid, boundarythe near-marginal mode with wave vectok,2 ki, in the
conditions are adopted, even though its amplitude is signifianalysis of the instability in the smad-limit. The treatment
cantly less in that case. of this limit has been given elsewhere when the rotation vec-
We analyze the convection through a pair of coupled nontor is exactly vertica[13]: there it is found that whenR
linear partial differential equations for the vertical velocity —R.)/R.=0O(€?), where 0<e<1, all rolls are unstable to
componentw, and a stream functios that describes the perturbations oriented at an angle= O(€?), regardless of
large-scale motions. In these model equations, the depetthe vertical rotation rate. On the other hand, instability to
dence of the flow field upon the vertical coordinatis fac-  either the usual Kppers-Lortz disturbances, which haye
tored out, so that the model directly involves the dependence-O(1), or to disturbances withp<e?®, requires that the
of wand upon only the horizontal coordinatgsindy, and  vertical rotation rate exceed some threshold value. The ef-
time. The model is based on that of Ponty, Passot, and Sulefacts of a weakly tilted rotation vector are explored below,
[8], and is similar to other models, for example, Refs.and it is shown that some rollghose of the smallest ampli-
[9-11]. tude, farthest from being aligned wif,)) may be stabilized
We begin our analysis by studying the pfeers-Lortz in-  against the small-angle lopers-Lortz instability.
stability of convection rolls, treating first the comparatively  To facilitate the analysis of the small-anglé ppers-Lortz

1063-651X/2003/6(11)/01630114)/$20.00 67 016301-1 ©2003 The American Physical Society



S. L. POLLICOTT, P. C. MATTHEWS, AND S. M. COX PHYSICAL REVIEW B7, 016301 (2003

instability, we assume for algebraic convenience tat 7w, =[€’r —(1+V?)?]w+ e®w?wy,— MW—a;Vw- VM
=|k,|=k., although exact equality is not essential to the R R

instability. If this assumption is relaxed, so thid|,|k,| +a,z- VX[ | VWPV W] = a3z (VWX Vi) — awV 2y
~k., then a further instability is found, this time present _ 2

even for the exact alignment between the original and the asVW-VV=y, @
perturbing rolls(i.e., for =0), through an analog of the R
Eckhaus instability14]. However, in the presence of non-  V2y=PIV*y+ agz- VX (VWV2W) + agV - (VWV2W),
zero Q,, this instability is essentially modified from the (2
usual Eckhaus instability in two respedi$5-17. First,

rather than being purely a phase instability, it may have avhere

significant impact on the amplitude of the convection and

can lead to a pattern of stable, strongly localized convection. M=w2+Vw-Vw.

Second, ifQ}, is sufficiently large, and the Prandtl number

not too large, therll rolls may be susceptible to this insta- Tpe parametew is proportional to),, [6], and appears only
bility at onset, generally leading to localization of the con-jn gne Jinear term in Eq(1); this term alone breaks the
vection, to convection in a planform other than rolls, or t0gtational invariance of the system. The parameters
time-dependent convection. _ n _ ag, . . . g andr are functions of the Prandtl number Pr and
There are, of course, many other instabilities to which thgpe Taylor number, andis a rescaled Rayleigh numbjg].
roII‘_s may be sgspepuble, mpludmg thg zigzag and skgwed—rhe termsa,, @y, as, andag are odd functions of), , and
varicose instabilities. A detailed analysis of these other instagase terms break the reflection symmetry of the system. If
bilities is given by Pollicot{18]. o _ Q,>0, thena, andas are positive butr, andag are nega-
Our analysis of the various instabilities is compared withijy,e The model has the symmetw— —w, which is inher-
numerical simulations in Sec. VI, which allow us to deter-jiaq from the up-down symmetry of the 6riginal problem.

mine the nonlinear development of the instabilities. This model shows similarities to other two-dimensional
convection models that include a pattern madand a large-
II. MODEL EQUATIONS FOR ROTATING CONVECTION scale vorticity modey. Unlike the models of Neufel@ét al.

. . . ) ) EO] and of Cox[11], however, our model allows the large-
In this section, we introduce a reduced two-dimensionak,je mode to evolve in time, rather than be enslaved to the

model for rotating convection in a Boussinesq fluid. Suchy.«arn moden. Our model corresponds closely to that of
models have been widely used for studying convectio ontyet al. [8], but with the addition of the term iw. As

[8-11] and have the advantage of greatly simplifying both jis/ssed by Roxin and Rieck&2], we can regards as

analytical and numerical studies, while capturing the esse'}'epresenting any effect that breaks the isotropy of the system,

tial features of the convection. . . . .
. . . such as an oblique rotation axXess her¢, or a weak imposed
Our model is essentially that of Pongy al. [8], derived .- d X QA P

for the caseQ,=0, but with an additional linear terrf6] The basic state of no motion ig= =0, and when lin-

reflecting the presence of a small horizontal component iRy, ;a4 ahout this state Eqd) and (2) decouple, so that a
the rotation vector. Its derivation is now briefly sketched. It J4o \ith wave vectok=(k,I) has growth rate.,, or \,,
1 w /)

is assumed that the parameters are such that the onset \of ore
convection is steady, and that the horizontal boundaries at the
top and bottom of the fluid layer are stress-free and isother-
mal. The horizontal component of the rotation vector is cho-
sen to point in they direction, soQ2=(0,Q2,,,Q2,). The solu-

tion to the governing equations is then expanded in powers Ny=—P1 k2. (4)

of a small paramete#, proportional to the square root of the

excess Rayleigh number, assuming that convection is cloda the isotropic cased=0) the modes of maximum growth
to onset and tha,= O(¢€). As Pontyet al.[8] indicate, itis  rate are those on the circ|&|?=1, but for nonzeraw this
necessary to make some simplifying assumptions concerningjtuation is further restricted so that the mode of maximum
the form of the solution at second order in order to completeggrowth rate occurs whek=1, =0, i.e., for rolls with their
the derivation of a relatively simple model. The price that weaxes aligned with the horizontal component of the rotation
pay for this relative simplicity is that the resulting model vector. For rolls that are not aligned, the mode of maximum
equations are not strictly asymptotic, and involve terms ofgrowth rate hagk| =1+ O(€?).

mixed asymptotic order. The final dimensionless equations On large horizontal scaleg; is only weakly damped, re-
involve the vertical velocity componemt(x,y,t), where the flecting the fact that a uniform flow is neutrally stable with
dependence on the depth of the fluid layer has been factoreddress-free boundaries. This near-neutral large-scale mean
out, and a stream functiaf(x,y,t) for the mean flow. Itisa flow plays a crucial role in modulational instabilities of the
consequence of the slight deviation from a vertical rotationconvection[13,16,19.

axis that the only influence of nonzef@,, is through an In Sec. lll we consider the simpler case of infinite Prandtl
additional linear term in the equation far, the form of this  number, wheny may be neglected. A more complicated gen-
term was derived by Busg€]. The model equations are eral case is discussed in Sec. IV.

=€ — (1 |k|?)2— €022, @3)
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Qy A. KU ppers-Lortz instability for =0 (isotropic case
A If =0, theArolls exist forr >0 and have amplitud&,,
A rolls where
A [ r
, B rolls ] 0™ 3+q’
9 \ Qy Perturbations to the amplitude of therolls are damped, but
. . . 2
perturbations in the form oB rolls grow like e\T=g"<,
where the growth rata satisfies
X A a,Sin 2¢p— a1(1—cos 2p)
LA P L %) (7)
FIG. 1. Geometry of the axes of theandB rolls in relation to r 3+q

the horizontal component of the rotation vector. . .
P For the Roxin and Rieckgl2] case, Eq(7) becomes

III. INFINITE PRANDTL NUMBER N 2a,Sin 26
I

In the limit of large Prandtl number Pgj is strongly B 3
damped and modeld) and(2) reduce to the single equation
and the maximum growth rate is thus achieved whkn
W, =[€r — (1+ V)2 W+ €0’y — W(w?+ gVw- Vw) = /4, giving rise to Kippers-Lortz instability ifa,> ay
3

_ . 2 . =3.
 VW- V(W Vw-Vw) In our more general case, from E), \ is maximized

+a22-V><[(Vw~Vw)VW]. (5) when tan2b= a, /a4, and the condition for instability is
2 2
Here we have introduced a paramedgto facilitate compari- PP ajtaz— a1>0
son with the model of Roxin and Rieck#&2] (for which we 3+q '
setr=1, g=0, a;=0); for our model,q=1. _ _ _
For e<1 we expand the solution to E(ﬁ) as which can be written alternatlvely as
W= eW; + €Wy + €W+ - - -, a5>(3+0)%4+ay(3+0).

and consider terms at successive orderg of Eq (5) We These results are independent of the orientation of the Origi-
consider the stability of one set of roll) to a second set of Nal rolls, and show that rolls become unstable to the
rolls (B) whose axes lie at some angfeto those of theA ~ Kuppers-Lortz instability ifa; is sufficiently large.

rolls. Thus

B. Kuppers-Lortz instability for w#0

— i(x cosf+y sin 6)
w,={A(T)e +c.cf In the casew#0, the A rolls exist for r > w?sinfd and

+{B(T)ellxcos@+ ) +ysin(@+4)l 4 ¢ c1 (6) have amplitudeA=A,, where
whereT = €%, representing rolls whose axes make angles A= M~ Sir’o
and 6+ ¢ with the y axis, as shown in Fig. 1. We have 0 3+q

assumed for simplicity that both sets of rolls have a wave _ _ _ ) )
vector on the critical circlék|>=1. At O(€%) we find thatA ~ Perturbations irA are still damped, but now perturbations in

andB evolve according to B have growth rate\, where
A =rA— 0?(sif0)A—(3+q)A|A|>—2[3+q+ a,sin 2¢ TN=—T— w’SirP(6+ ¢) + 2w’sirF o
_ 2 a5SiN 2¢p— a1(1—cos
+ay(1-cos 26) JAIBI2, 4222 3+1(q 2~ wisite). ®)

B’ =rB— w?sir?(#+ ¢)B—(3+q)B|B|>—2[3+q o _ _ _ _ _
' It is instructive to begin our discussion of E@) by consid-
— @,Sin 2¢+ al(l—c052¢)]B|A|2. ering the region close to the marginal stability curve, where

. 0<A3<1 (i.e., 0<r — w’sirf6<1). Here the growth rate sat-
These equations collapse to those of R&2] for the appro-  isfies

priate parameter values.

We now consider the stability of th& rolls to perturba- ™A~ 0 [SIFO—sirt(6+ ¢)]. 9
tions in the form ofB rolls. With no loss of generality, the
amplitudeA may be taken to be real. Thus\ can be mad@ositiveby selecting
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no rolls .

12 norolls

no rolls

rolls stable

02 rolls unstable .

o L 1 1 I ! ! 1 o L L L L ! ! i

FIG. 2. Marginal stability curvéheavy line, delineating the region of existence of nadisd stability regions, according to Eg.4), with
r=0.2 and(@ a,=1 or (b) a,=2. The stability of rolls to the Kppers-Lortz instability is indicated.

p~—0. (10 w? - 2a, )
Amac= 1~ 5 +20 Sirfg— m(r—w Sirt6)

So, just inside the marginal stability curve, the rolls are o 2 2
stable This instability will be referred to as aalignment 2a,(1 — w?si’6)  wsin 20)
instability, since it tends to bring the most poorly aligned 3+q 2

rolls closer into alignment with the horizontal component of (Zal(r — wsirPd)  w2cos 20) 2

1/2
the rotation vector. . (13
Another special case of interest is the rolls with-0,

which are aligned with the horizontal component of the ro- . . o
tation vector. In this case, the growth rate of thépidars- where taking the positive square root ensures that this is the
Lortz instability satisfies, from Eq(8), maximum value ok (rather than the minimumThe stabil-

ity boundary for rolls is ther ,,,=0.
For the parameter values appropriate to the model of

3tq | 2

=1 — wisirP e+ 2r a,sin 2¢—3aj(q1—cos 2p) _ Roxin and Rieckd12], Eq. (13) simplifies to
N w2+2 2620+ w*cog20
Comparing this expression with the corresponding expres- ma— — I 5T ewts] 4

sion(7) for =0 shows that the growth rate is reduced when 5 5. 21172
w#0, in other words, the horizontal component of the rota- 2a,(r — w?sir’6) _@7sin 20) } (14
tion vector inhibits the Kppers-Lortz instability. 3 2 '
Returning to the general case, we seek, for rolls of a given
orientation (i.e., a given value of9), the most dangerous Figure 2 shows the stability region for rolls, derived from
mode of instability, by maximizing. over all ¢ in Eq. (8). Eqg. (14) whenr=0.2, in two casesu,=1<ay, and a,
We then consider the stability boundary, given Xy, =0. =2>ay, . Inthe former case, Fig.(@), all rolls are stable to
In the Roxin and Rieckgl12] case the Kippers-Lortz instability whem =0, and this forces the
stability boundary to have the indicated topology. Asis
a2 ora increased, rolls significantly out of alignment are the first to
N=T(— 1+ 3a,sin 2¢) — o i(6+ ¢) become unstable. By contrast, in the latter case, Fiy, all
+ 2(apsin 2¢p— 3)sirfd]. (11)  rolls are Kippers-Lortzunstablewhenw=0, and hence the
stability region has a different topologyt is closed at the
bottom. Herew must exceed some threshold before the ten-

; . . ; . dency of rolls to align withw can stabilize them against the
ming from Eq.(11), are incorrect, since they are inconsistent , . . . .
, . . Kuppers-Lortz instability. Note that some rolls with positive
with the result following from Eq(9) showing that small- o \
# are unstable fom=0, and asw is increased, first become

amplitude rolls are always unstable; we correct them below.Stable and then become unstable again. There are two bhvsi-
In the general cas@), the growth rate is maximized when gain. phy

However, the stability boundaries plotted in Rf2], stem-

cally distinct instability mechanisms acting here: the “align-

$= Pmax, Where ment” instability, caused by the horizontal component of the
rotation vector, and the Kapers-Lortz instability, caused by
4ay(r — w?sirtd) — (3+ ) w?sin 26 the vertical component. However, these two instabilities can-
tan 2¢ma= 2 not be clearly distinguished since their growth rates are given

4an(r— w’sirtg) +(3+q)w’cos 20 by a single formula.

Regardless of the value of, (provided it is nonzerp by
At this value of ¢, the corresponding growth rate satisfies virtue of the fact that the fluid layer has a vertical component
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of rotation vector, we expect the stability boundary to be ,pz:{¢+(T)ei{x[0080+005(0+¢)1+y[5in9+si“(€+¢)l}+C_C,}
asymmetrical about=0, since thea, term breaks the re-
flection symmetry of the system. This asymmetry is readily
observed in the asymptotic form of the stability boundary for 0 2i(x cosd+ysing)

L + T ysif) +c.c,
large w, which is found from Eq(14) to be {i(Me c.c}

+ {4y (T)e!{xlcoss—cos@+ &) +ylsing—sin(@+ A1} 1. ¢ ¢

+{l/f¢(T)€2i(X cos(ﬁ+¢)+ysin(a+¢))+C'C.}’
N2 anr

o= +——+0(0"3). where
w 6w?
CYGAB
. . e d/+ =- OV L e Y
By contrast, the two sections of the marginal stability curve, 2P1(1+cosp)
between which rolls exist, are symmetrical and are given by .
- aGAB
+\r vo= 2Pr(1—cosp)’
0= - +0(w3).
1100: _ aG_A\Z
At leading order therefore, for large, the width of the 8Pr
region of stable rolls is narrower than the width of the region 2B2
in which the rolls exist by a factor of2. The same result yP=— 6=
holds for the more general stability boundafy). 8pr

A further noteworthy consequence of the asymmetry of N )
the stability boundary arises when it has the topology of Fig. At Q(e ) in Eq. (1) we find thatA and B now evolve
. o X according to
2(b). In this case, asw is increased, the first rolls to be

stabilized to the Kppers-Lortz instability are not those A’ =rA— 0?(si6)A—aA|A|2—b*A|B|%,
aligned with Q,; instead, the minimum of the stability
boundary corresponds to the rolls with some positive value 7B’ =rB— w?(sir’(6+ ¢))B—aB|B|>~ b B|A|?,

of #. This preference illustrates a balance between the physi-
cal influences of the two components @f one tending to Wwhere
force alignment with thg axis, the other tending to turn rolls

counterclockwise. It is not possible to write down a simple a=A4+ ast2as o (16)
analytical expression for this preferred valuetoh general, 2Pr 6
but when a, just exceeds the threshold valug, , it is
readily determined that the stability boundary takes the fornnd
- . agtas
, 2(azla —1r b==2[4* a,sin2¢+ a1(1—cos2p)]+2 T) ag
cos 20+sin20 "’
_ a3agSiN2¢
and hence that the first rolls to be stabilized to theppers- TPr(1-cos2¢)
Lortz instability have Let us now consider theA-rolls having amplitudeA
=A,, where
6~ 3tan 1= 7~0.39.
r— w’sinfe
. Apg=\——— 17)
Results for the more general stability boundék9) show the a
same qualitative features as discussed above and as shown in o )
Fig. 2. Further details are given in R¢L8]. Their stability is determined by the growth rateof pertur-
bations to theB-rolls, which satisfies
IV. FINITE PRANDTL NUMBER IN=1—w?SinA(0+ ¢)—b A2, (18)

We now turn to the more complicated case of finite
Prandtl number Pr, so the governing equations are Egs.
and(2), and proceed as in the case=Pr, but also expand-
ing the mean flow, so that

Analysis of this expression fox is in general rather compli-
cated. In the limit P, Eg. (18) reduces tq8); for finite
Pr the region of stability of rolls is modified. Figure 3 shows
the growth rate as a function @ for a typical case. Note
) 5 that the growth rate has a maximum at a finite valuepof
W=€eW;+ e Wot---, =€t ---. (159 put diverges ag—0. This divergence is a generic feature of
the Kippers-Lortz instability with stress-free boundaries
As when PrEx, w; takes the form Eq(6) andw,=0. By  [2,8,13. Rolls are always unstable to small-angle perturba-
considering the terms & (%) we find tions, and the introduction of a horizontal component of the
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2.

FIG. 4. Wave vectors of the significant modes for an analysis of
0 1 \ the small-angle instability at finite Prandtl number. Part of the circle

of critical wave vectors is shown. The important modes wkheis
O(1) are the original roll#\, and the perturbing roll4, (both with
critical wave numbers, for analytical conveniepncén addition,
when ¢ is small, other significant modes a the large-scale
mode driven by interactions @&, andA; rolls, andA,, perturbing
FIG. 3. Growth rate as a function @f, according to Eq(18), rolls (with nearly critical wavenumbegdriven by interactions of the
when 7=1.081, ay=0.718, a;= — 0.4, a,=2.0, @3=8.650, a, Ao rolls andC mode, or by cubic interactions @, andA, rolls.
=—0.557,a5=0.03712,a4= — 0.696 (corresponding to a Prandtl
number of 10 and a Taylor number of ¥ =1, »=0.59, ¢  to perturbations with wave vector&{ m,l +n) (A; rolls),

=0.9. (k—=m,I—n) (A, rolls), (m,n) (C mode, where

rotation vector does not appear to prevent this instability (k+m)2+(1+n)?=1. (21)
(except for the rolls very close to the marginal curve—see . .

Sec. IV A). In our prior notation,

In what follows, we shall be particularly concerned with
the limit »— 0, in which the original rolls and the perturbing
rolls are almost in alignment with each other. We therefore . .
note at this point that the coefficients , ?, andy? are all I=sing, 1+n=sin(6+¢). (22)
bounded in this limit, but that the large-scale mean—flowIn view of Egs.(20) and (21)
componentyy~ is singular, with ' '

k=cos#, k+m=cod6+ ¢),

it follows that

. 2(km+In)+m?+n?=0. (23
b= T (6 e g )
Pr 12 240 ’

Then from Eq.(22), it follows that sing=kn—Im. To study
nearly aligned rolls, we suppose thatis small and hence so
indicating that the calculation needs to be considered morare the wave numbens and n; in this limit, ¢~kn—Im

carefully whene is small. In the limit¢p—0, we find from  ~(m?+n?)'2
this analysis that It is not possible to write down self-consistent nonlinear
amplitude equations for modeég,, A;, A,, andC as in the
azaghs preceding section. This is because, for sngglithe interac-
TA~ = Pr¢p - (19 tion of the C mode with each of thé\ modes generates a

further near-margina® mode. Instead, we consider tiig

This breakdown in the theory reflects our incorrect treatmenfnode to be the basic state and the other modes to be small
of the modey~, which is treated as slaved to tiAeand B perturbations; it is then possible to derive asymptotically
modes:; whereas when these two sets of rolls are almos€lf-consistent linearized equations for the perturbations.

aligned, this mode is dynamically significant in its own right. I order to determine the stability of rolls, we consider
expanding a solution to Eqél) and(2) in the form

A. The limit of nearly aligned rolls V\IZ{EAOei(kay)Jr 5A1(T)ei[(k+m)x+(l+n)y]

In order to resolve the divergence of the growth rate for
the instability of one set of the rolls to a second set, nearly
aligned with the first, we need to consider three perturbations
of significance, as illustrated in Fig. 4. We simplify the fol-
lowing analysis by assuming that both the original rolls and

one of the perturbing rolls have critical wave numbers. Wewhere5 is an infinitesimal quantity, and;, A, andC rep-

thus consider the stability of tha, rolls with wave vector resent perturbations to the rolls, whose amplitude is given by

(k,1), where \/W
k2+12=1, (20) Ao= - (24)
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Although a variety of smallp scalings is necessary in order Rolls might thus escape instability if this term could some-
to describe fully the stability of th& rolls, the most impor- how be made smaller than the scalin@®$—(29) suggest.
tant is the scaling that allows a matching to the apparentlfFor example, near the edge of the region of existence of the
divergent Kyppers-Lortz resulf19), resolves the divergence original rolls, their amplitudédy, and hence this instability-
of the growth rate, and contains the maximum growth rategenerating term, is small. Thus we now explore how to res-
When w=0, as shown by Cox and MattheWs3], the ap- cale quantities so as to include both the “small-angle”
propriate scaling is Kuppers-Lortz instability illustrated in Eq(31) and the
alignment instability of nonzera [illustrated in Eq.(9) for
m,n=0(€*"), (259  Pr=c]. It turns out that in order to introduce stabilizing
terms,w must be large and somust be small, to maintain
km+In=0(e"), (26)  the asymptotic balancel =O(1) implicit in Eq. (24).
The actual derivation of the new scalings is rather alge-
A1,A>=0(1), (27)  braically involved. We proceed by considering the terms that
arise in equations for the quantitiesl(A;+A,)/dt, 7d(A;
C=0(e"), (280 —A,)/dt anddC/dt. We choose a scaling so as to ensure the
. presence of certain terms that will give a balance between the
with a growth rate small-angle instability described above, and in more detail
85 by Cox and Matthew$13], and the tendency to align with
A=0(e™). (29) nonzerow. A considerable amount of trial and error is sup-
pressed in the following description. In the equation for

If we adopt this scaling for the present problem, in which 7d(A,+A,)/dt, the key terms are proportional to

does not necessarily vanish, we find that, A,, and C
satisfy E0n2(A+A,), Ewn(Ai—A,), nYA—A,).

32
T)\A1:a3A0(kn_|m)C, ( )

Likewise, in the equation ford(A;—A,)/dt, the key terms

T™NA= —4(m?+n?)?A,— azAg(kn—1m)C, are proportional to
0=Prm?+n?)2C+ ag(kn—Im)2Ag(A; +A,), 0’n?(A1—A,), eAgnC. (33
independent ofv. Thus the growth rata satisfies Finally, in the equation fodC/dt, the time derivative itself

is asymptotically smaller than those terms retained, of which
dasa the key terms are
PAZHATA (M 0?24 —2 = (kn—1m)*A5=0. (30 Y
PmMAC, enAq(AL+A,). (34)
The scalings(25)—(29) aIIows.us to match the apparently
@vgrgent growth rate of the I@pers-Lortz analygs N t_he perturbation quantities by settiry; —A,=0(1). Then, by
limit $—0 to a regular, nondivergent expression valid at . - ,
- . .~ balancing the terms indicated, we find
small angles between the original and perturbing rolls, since

With no loss of generality, we specify the order of one of the

taking the limitm?+n?— in Eq. (30) gives |=0(e2 37
a3a5A(2)(kn—|m)3 agaeA(z) n:O(Ey)
TN~ — ~— , (31 '
Pr(m2+n?)2 Pré
m=0(€2?),
which agrees with the divergent small-angle liifii®) of the
Klppers-Lortz instability obtained above. Hence, as de- w=0(€3"2),
scribed in Ref[13] for the casew=0, all rolls are unstable
in this scaling. While one might have expected the presence Ag=0O(t3r=6)2)
of a nonzero horizontal component of the angular velocity
vector to exert a stabilizing influence on rolls with appropri- A1+A2=O(52(1‘27)),
ate orientation, its magnitude here is too small to dgito
contribution to the growth rate ®(€?), which is asymptoti- A;—A,=0(1),
cally smaller than the growth rat@9) found herg.
Increasing the magnitude af stabilizes some of the rolls, C=0(e"?),
as we now demonstrate. We begin by noting that the insta-
bility in Eq. (30) is forced by the term with k—1~— 212, where y must lie in the range 6/13y
<1/2 so that terms omitted from Eq&2)—(34) remain as-
dagag 32 ymptotically smaller than those retained. Correspondingly,
(kn—1m)°Ag. :
Pr the growth rate is
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The expression§37) and(38) can profitably be analyzed by
noting that the boundarw ,,,,=0 between the stable and

Note that the balanc&??=0(1) is retained, consistent unstable rolls arises when

with the scaling implied by expressions such as Ef),
where we have used EQ?2).
The governing equations aD(e*), O(e®?772) and

0O(€°"?), respectively, i.e., leading order in each case, are

I™NALFAY)) = — 0?n?(A +Ay) — (2€?w?In+4n?m)
X(A1—=Ay),
™A= Ay) =— €2w’n?(A;— Ay) + 2eazAgnC,
0=Pm*C+ eagn®Ay(A;+A,).
Thus the growth rata satisfies
N2+ 22w?n? 1\ + e wn?

- 4€%(€w?l +2mn) azagA;
Pr -

0. (35

In analyzing the stability of these small-amplitude rolls ac-
cording to Eq.(35), we first note that there can be no oscil-

latory instability because if the imaginary partis nonzero
then the real pait, = — €?w?n?/7<0. Thus in our examina-
tion of instability, we restrict attention to the case of rkal

For a given set of rolls, we aim to maximi2e over n
(with 2m-+n?=0 to this ordey. For this purpose we intro-
duce

A=7\
and

Pr
Q=———>0

= (36)
4€*(— azag) A

so that the scaled growth rate satisfies

w’l—n

Q

A2+ 2620%N2A + *w*n+ =0.

From this formula it is immediately apparent that rolls with

<0 are unstable, but that rolls with~0 are stable to per-
turbations with either small or large values wf We now
seek to determine whether any rolls with 0 may be stable
to all perturbations, regardless of It is readily determined
that A takes its maximum valud ., whenn=n.,, which
satisfies

9n?
3 max 2 2
n.,— ———=¢€wl, (37
ma 16e*w*Q
with
3n
A = — €2w2n?2, +—— (38)
max max 462(02Q

3
4e*0*Q

nmax
and hence the threshold corresponds to rolls with wave num-
berl=I., where

27
RPTTERT

In view of Egs.(24) and (36), this equation gives$,; only
implicitly, and it is somewhat more revealingly written as

3 .8 14p3;3\ 13
4238w PIC)

39
27(— azag)® 39

212 _
r—w |C—<

Since the term on the right-hand side of E8P) is small, we
may approximaté, by \/w in this term, leading to

I Jr (4€80®)Rapr 40

¢ z B 6( - le3(16) ( )
This indicates the location of the stable rolls just inside the
marginal stability boundary and shows how the width of the
band of stable rolls increases @sncreases. The alternative
casen,,,=0, which appears from E@398) to offer the pros-
pect of also giving\ ,,»=0, is ruled out since, by E437), it
can apply only tol =0; however, whed =0, A is in fact
maximized  for Np,=916e*w*Q,  giving A pnax
=27/256°w%Q?>0, and instability} By analyzing A
nearl=I., we find that

8e2w8Q
9

(I=1x)+0((1-10)%)

Ama= —

asl—1.—0. Thus rolls are predicted to be stable fqust
greater thar, i.e., for

Jr

[<l<—.
¢ w

Such a conclusion differs qualitatively from that found above
for the caseP =<, where rolls near the marginal curve are
unstable The resolution of this apparent discrepancy is not
immediately obtained by taking the limit Pre in Eqg. (39),
since we then find.=0, which suggests that all rolls with
>0 are stable in this limit. However, this conclusion is un-
warranted, since further scalings would need to be consid-
ered to address properly the limit-Pre [we can see this by
noting, from(38), that our computed maximum growth rate
A max Decomes small in this limit, and hence additional terms
must be includefl

In this analysis of the small-angle Kpers-Lortz instabil-
ity we have assumed that both tAg rolls and theA; rolls
have exactly critical wave number. This assumption, while
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not crucial to the presence of the instability, yields consider- — 3 4
able analytical simplifications. However, the assumption is 10° === 1 -5
too restrictive to capture a further instability that manifests @ 2 D 4 S I 4 -3
itself when theA, andA; rolls are in extremely close align- 'g < A T B S 1
N

T
--------ﬂ
»,
.

ment, in which case it must be relaxed. This instability is = S ;
analyzed in the following section. = Py s
y g g_.m 10 4 ) /
I ¢ K
V. ONE-DIMENSIONAL MODULATIONAL INSTABILITY < ,;,i ‘J'
In the limit of extremely close alignment between the -
original and the perturbing rolls, the above scalings need 104 05 1 15 2
reconsideration, in order to permit analysis of an Eckhaus- t x 10*

like instability [14—17. Here we allow the wave vector of
the original rolls to lie slightly off the critical circle and ~ FIG. 5. Nonlinear evolution of mode amplitudes under the
(m,n) to be roughly parallel tok,l) (rather than roughly Kuppers-Lortz instability in Eq(5), with =0 and a,=2. The

perpendicular, as in the preceding secjeo that instability continues indefinitely, forming a heteroclinic cycle.
kn—Im<km+In<1, (41 W' =—aA3(V+W)+ asAg(m?+n?)U
rather than the scalings leading to H80). From eq.(41) +4(km+In)[2(kp+1q) — (km+In) W,

combined withk?+12~1 it follows that

U’ =—Pr(m?+n?)U+ agAg(V+W).

(km+1n)?
m2+n2 ' Although, in principle, this system allows both oscillatory

and monotonic instabilities, we find in practice that the
In the absence of the large-scale maglesuch consider- Monotonic instability is observed, and for small valuesrof

ations yield the well-known Eckhaus instability; however, its@nd n. The condition for instability in the limim,n—0 is

characteristics are significantly modified by the presence ofeadily found to be

the slowly damped vertical vorticity mode5,16]. In par-

ticular, whereas the Eckhaus instability involves distortions A(z,[aﬁ(a4—2a5)—8Pr]+16P|(kp+|q)2> 0. (42
to the phase of the pattern, the corresponding instability here
distorts both the phase and the amplitude. In particular,all rolls are unstable if

Near the onset, we consider a basic state of rolls in which

W= eAge Xty repxreay) L L y=0 ae( @y~ 2as)>8Pr.

. 2 12 . . . Since aga,>0 and agas<0, all rolls are unstable to the
with k"+1°=1. The amplitude of these rolls is, to leading 4ne_gimensional instability of Matthews and Cid5] at suf-

order ine, ficiently small Prandtl number. This instability is not pre-
vented by the horizontal component of the rotation veetpr
r—w’?—4(kp+lq)* the only effect ofw is to reduce the amplitude of the rolls, if
Ag= ' y o . . plitude of the rolls, i
a they happen not to be aligned with thexis.
It is straightforward to see that the stability boundary for
wherea is given in Eq.(16). this instability reduces to that for the usual Eckhaus instabil-
The stability of the rolls is investigated by writing ity when the effects of the coupling to the large-scale mode
. become negligible, e.g., whery— 0 or Pr—oo. In this limit,
w=e(Ag+ V(T)e's(mxtny) the familiar factor-of-three difference between the expres-
. . sions for the marginal and Eckhaus stability boundaries be-
+ W (T)e tdmamgllocyr a4 ceqt o comes clear if the conditiotd2) for instability is written in
the form

p=U(T)e' M+ Mycest. ..,
o , r—w??=12(kp+1q)2,
where T=¢€%t, and by linearizing in the small disturbance
amplitudesyU, V andW. : : : )
At O(€%) in Eq. (1) andO(e?) in Eq. (2), respectively, we \;\;gfh should be compared with the corresponding expres
find that
22— 2
V' = —aA2(V+ W) + agAg(mP+n2)U — 4(km-+In) r-of"=4lkptlq)
X[2(kp+I1q)+(km+In)]V, for the marginal stability boundary.
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TABLE I. Comparison between numerical and theoretical stability thresholds for rolls in various align-
ments, for cases where,<ay, so that rolls are stable for small. The results for¢p= ¢ give the
threshold corresponding to E(@.3), which is maximized over all orientations of perturbing rolls, while those
for ¢=— 6 give the theoretical threshold taking into account only those modes that can be accommodated in
the computational box.

Condition for stability

Rolls r ay Numerics Theory ¢= dma) Theory (p=—6)
(3,9 0.2 1.0 »<0.415+0.005 ®<0.406 ®<0.415
(3,—4) 0.2 1.0 ®<0.255+0.005 ®<0.255 ®<0.255
4,3 0.3 0.5 »<0.655+0.005 ®<0.659 ®<0.660
(4,-3) 0.3 0.5 ®<0.555+0.005 ®<0.554 ®<0.564
VI. NUMERICAL SIMULATIONS A. Infinite Prandtl number

) . ) ) , First we simulate the infinite-Prandtl number mod8J
In this section we present numerical simulations of thefor various values of, , anda,, fixing €2=0.2, r=1, and

model (5), for infinite Prandtl number, and Eqel) and(2), , — 0.4, and compare our results with those of Sec. III.
for finite Prandtl number. These simulations allow Compari-We carry out two sets of simulations, distinguished by the
son with the analytical results presented above for Vari°u§tability of rolls when w=0. In the first set,a,<ay,
instabilities of the roll pattern, and also investigation into the _ 1 55" and all rolls are stable to the ppers-Lortz instabil-
nonlinear development of these instabilities, which is not, whénw=0' in the second set,> ay, , and all rolls are
otherwise amenable to the analysis. Our code is pseudosp Astable wher'w:O (i.e., the stability CLJrves have the to-

tral,. and pe_riodi_c boundary cor_1dition§ are applied in _bOt"Eologies of Figs. @) and 2b), although the parameter val-
horlz_ontal dlrect|_ons._ In each simulation th_e computational,es are different there from those appropriate hdfer each
box is square, with sides of length=107. This size of box jnjtial orientation of the pattern, we carry out a series of
allows five pairs of rolls with critical wave numbers parallel simuylations for different values ab, noting where the sta-
to either side of the box. Adequate numerical resolution isility of the roll pattern changes. Tables | and |l summarize
obtained using 6464 Fourier modes. Time stepping is the results obtained from the various simulations. Note that
achieved through the so-called exponential time differencinghe finite size of the computational box has the consequence
method[20]. that the theoretical stability boundary is shifted slightly, since
We name rolls according to their orientation as follows: perturbation rolls with¢= ¢, are not generally permitted
rolls with wave vector K, ,k,) are called k;,k,)L/27 rolls.  in the box, and it is more appropriate to compute the stability
For example, rolls with critical wave numbers and axes parboundary using instead=— 6 (Table ) or the value¢
allel to they axis are (5,0) rolls, or, equivalently—(5,0) = ¢, corresponding to the most unstable mode found in our
rolls. Since (,j) rolls are equivalent to{i,—j) rolls, we  numerical simulationgTable II).
may specify that=0. This periodic computational box thus  Consider first the simulations fat,< @y, , correspond-
allows the following six critical rolls: (5,0), (4;3), (3, ing to the parameter values in Table |. Wher-0, all rolls
+4), and (0,5) rolls, corresponding t®=0°, #~=*=37°,  are stable, regardless of their orientation. The (5,0) rolls re-
0~ +53°, andf=90°, respectively. main stable asw is increased, but, a® exceeds various
The initial condition for each of our simulations takes thethreshold values, the (34) and (4;-3) rolls are destabi-
form of a roll pattern in one of these orientations added to dized in turn. In our simulations, the nonlinear development
small random perturbation. of the instability reveals that they are eventually replaced by

TABLE Il. Comparison between numerical and theoretical stability thresholds for rolls in various align-
ments, witha,> ay, . As in Table |, the numerical stability thresholds are determined to witt@005. The
results forg = ¢y give the threshold corresponding to E#j3), which is maximized over all orientations of
perturbing rolls, while those foep= ¢, give the theoretical threshold taking into account only the most
unstable mode found in our numerical simulations, compatible with the finite computational box.

Condition for stability

Rolls r as Numerics Theory = dmay) Theory (¢p= ¢,)
(5,0 0.2 2.0 0.255% w 0.283<w 0.25%<w
(3,9 0.2 2.0 0.265: w=0.425 0.32% w=0.425 0.30% 0w=<0.425
(5,0 0.2 3.0 0515w 0574w 0.570<w
4,3 0.2 3.0 0.385x w=<0.624 0.40k w=<0.622 0.395 w=0.622
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.

(a) (b) ) & L
-20 ) ) .
’ 10 0 0.5 1 1.5 2
t x10*
y FIG. 7. Nonlinear evolution of mode amplitudes in E§), cor-
responding to Fig. 6. Instability of the initial (3,4) roll pattern to
(4,—3) rolls manifests itself at~11400. These rolls are ulti-
‘ ‘ mately replaced by stable (5,0) rolls.
(© (d)

this has the consequence that of the rolls permitted in our

computational box, the first to become stabilized «ags
increased are not aligned wif,,. In order to confirm this
prediction, we chooser,=3 and perform a set of simula-
” tions with an initial pattern of (5,0) roll§i.e., roIIs__aIigned
with Q). For small values ofv, we observe the Kppers-
(e) X ® X
FIG. 6. Evolution ofw in Eq. (5), with w=0.425 andx,=2. (a) y
(3,4) rolls att=0. (b) Significant perturbation in the form of (4,
—3) rolls att=11100. (c) Rectangle pattern dat=11450.(d) (4,
—3) rolls att=13900. (e) Distorted rolls att=14 250. (f) (5,0)
rolls att=16 000. In this case the final state of (5,0) rolls is stable. |
)
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a stable pattern of (5,0) rolls. Thus whenis sufficiently
large, rolls are forced to align witf,,, as one might expect.

By contrast, wherw,> ay, , all rolls are unstable to the
Klippers-Lortz instability whenw=0. Figure 5 shows the
evolution of mode amplitudes over one cycle of thepisars- y
Lortz instability for o=0 and a,=2 (cf. Ref.[13]). The
initial state consists of (3,4) rolls; these are unstable to (1,
—5) rolls, which themselves are unstable to<3) rolls. In
turn the (4:-3) rolls are replaced by (5,1) and then (3,4)

rolls, thereby completing the cycle, which then repeats in-

() )
definitely, with a noise-dependent time scale determined by | -
numerical precision. Note that the (15) and (5,1) rolls do
not have a critical wave number. Figure 6 shows the evolu-
tion of the pattern atv=0.425 from an initial state of (3,4)
rolls. Here, these rolls are predicted to be unstable to perturb y
ing rolls with —96.7°< ¢<—73.8°, and indeed we find in
our simulations that the (3,4) rolls are eventually replaced by
(4,—3)-rolls (which have¢=90°). However, these rolls are
themselves unstablgegardless of the value @ when a, ?e) % X

=2), and are eventually replaced by (5,0) rolls, which are f
stable. Figure 7 shows the corresponding evolution of the FIG. 8. Evolution ofw in Eq. (5) for ®=0.4 anda,=3. (a)
mode amplitudes. (5,0) rolls att=0. (b) Perturbed (5,0) rolls at=550. (c) Wavy

For a,> ay , the stability boundary for rolls has a mini- rolls att=700. (d) Rectangular pattern at=750. (€) Wavy (4,3)
mum at some#>0, and for sufficiently large values @i,  rolls att=800. (f) Stable (4,3) rolls at=1000.

¥
|
1

«
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Lortz instability, leading to an ever-repeating cycle similar to
that illustrated in Fig. 5. However, whea is sufficiently
large, the result is qualitatively different, since some rolls
become stable—the first rolls to be stabilized turn out to be
the (4,3) rolls. In Fig. 8 we show the pattern evolution when Y
w=0.4, during which the (5,0) rolls are ultimately replaced
by stable (4,3) rolls, and there is no pjers-Lortz cycle. As
w is increased furthefi.e., above~0.515), the (5,0) rolls
themselves become stable. These results are summarized
Table Il, which shows the values @f for which the (5,0)
and (4,3) rolls are stable according to our analytical and
numerical results: as is increased from zero, (5,0)-rolls are
initially unstable, but become stable whenexceeds some
threshold. Rolls in any other orientation are initially un-
stable, then stabilize, then become unstable once more, an
finally cease to exist as is increasedcf. Fig. 2b)].
()
number of 1600. The parameter values are thef:
=—O 398, a1=-0.3, ay,=1.0, @3=8.273, ay=—3.670,
=2.447, ag=—0.918, andr=1.034. We also set=1 FIG. 10. Evolution ofw in Egs. (1) and(2) corresponding to
ande 0.3. Each simulation has an initial state of (5,0) rolls F19- 9-(@ (5,0) rolls att=0. (b) Perturbed (5,0) rolls at=110. (c)
with a small random perturbation. Wavy rolls att=120. (d) Pattern at=150. (e) Pattern at=170.
Whenw=0, rolls are stable to the finite-angle form of the () Wavy (5.2) rolls att=180.
Kuppers-Lortz instability, but unstable to the small-angle in-
stability of Sec. IV A. Figure 9 shows the dominant mode
amplitudes in this simulation, and Fig. 10 shows the corre-

sponding evolution of the pattern. Initially the (5,1) and (5,
—1) roll perturbations grow together, corresponding to th

(@)

B. Finite Prandtl number

We now turn to finite-Prandtl-number simulations of Egs.
(1) and(2) to illustrate the influence of the small-angle and
modulational instabilities on the convection pattern. Of
course, these instabilities do not arise in isolation and in the
process we also observe the more familiar skewed-varicos:
instability that is known to arise at finite Prandtl numbers
[21,22. Since many of our simulations produce qualitatively
similar results, we illustrate them first with two sets of simu-
lations, carried out for Rr2, and corresponding to a Taylor

modesA; and A, in the theory of Sec. IV A, although nei-
ther has a critical wave number here. Eventually the (5,1)
mode dominates and a pattern of (5,1) rolls ensues. This
' pattern is also unstable and is replaced in turn by (5,2) and
€then by (4,3) rolls. The (4,3) rolls are similarly unstable, this
2 ' . . time to perturbations in the form of the (3,4) and (5,2)
—50 modes, This example can be related directly to the analysis
lllllllll 2 of Sec. IV A, since both the initial rolls and one of the per-
______ 5 2 turbing rolls have a critical wave number. Here, in the nota-
43 tion of that sectionk=32 andl=2. The perturbation wave
vectors differ from the wave vector of the initial rolls by
(m,n)=(—%,%). As in our infinite-Prandtl-number simula-
tions atw=0, the orientation of the roll pattern continues to
precess about the vertical, although the angle between suc-
cessive rolls is much smaller here, leading to a generally
wavier pattern, apparent in Fig. 10. Note that we are suffi-
- - : ciently far above onset that the participating rolls do not
0 30 100 150 200 necessarily have critical wave numbéesg., the wave num-
t ber of the (5.2) rolls is 1.077].

FIG. 9. Nonlinear evolution of the dominant mode amplitudes in ~FOr nonzerow, some roll patterns become stabilized to
Egs.(1) and(2), whenw=0. The initial (5,0) rolls are unstable to these small-angle perturbations for sufficiently lakge as
(5,+1) modes, which grow at almost identical rates, until eventu-they did in the infinite-Prandtl number case to thepkars-
ally (att=125), one perturbation wins, and a pattern of (5,1) rollsLortz instability, e.g., ain=1.1 the (4,3) rolls are stable. In
is obtained. These rolls are themselves unstable, and are replacedansimulation from an initial state of (5,0) rolls, again at
turn by (5,2) rolls and (4,3) rolls. =1.1 the pattern is initially replaced by (5,1) rolls; but these
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YN ALCHTAER

FIG. 12. Planforms ofa) a modulated skewed-varicose pattern

(@) )
‘ ‘ and(b) a one-dimensionally modulated roll pattern. Parameter val-
ues are given in the text.

y Fig. 12b), is obtained. At higher values of the vertical com-
ponent of the rotation vector, a modulated skewed-varicose
pattern[cf. Fig. 12a)] is the final steady state of the system.

! L VIl. CONCLUSIONS
() (d)

1 In this paper we have studied the competing influences of
the vertical and horizontal components of the rotation vector
on the problem of pattern formation in thermal convection.
Although this problem is of considerable geophysical rel-

y evance, it has received very little investigation in comparison
with the case of a purely vertical rotation vector.

The horizontal componenf?,, of the rotation vector
k k breaks the orientational degeneracy of the problem, so that,
(e) % ® X

in general, convection occurs in the form of rolls rather than
FIG. 11. Evolution ofwin Eqs.(1) and(2) for o=1.1. (a) (5,0) more complicated patterns such as squares or hexagons. The

rolls att=0. (b) Wavy rolls att=30. (c) (5,1) rolls att=50. (d) rolls are subject to a competition between theplders-Lortz

Wavy (5,1) rolls att=90. (e) Distorted rolls att=100. (f) Stable instability that leads to a continual precession of the roll
(4,3) rolls att=110. axes, and the alignment instability that leads to a preference

for rolls aligned with€), . This competition can be analyzed

rolls are unstable to small-angle perturbations, and event)Vithin the framework of weakly nonlinear amplitude equa-
ally a stable (4,3) roll pattern is obtained. The evolution oftions, provided that€2,| is small. _
this pattern is shown in Fig. 11. Note that the final steady When the effects of the large-scale mean flow are negli-
pattern of rolls is not aligned witk2;, . At even higher values 9ible (e.g., in the limit of infinite Prandtl numbgrthe prob-
of w, the stable pattern is in closer alignment A, . lem can be studied with a single model equatin When

In our final set of simulations, we illustrate the effects of the vertical rotation rate, is small, rolls are susceptible
the modulational instability identified in Sec. V; to do so, weonly to the alignment instability. A band of possible roll
reduce Pr in order to satisfy E42). In all our simulations alignments exists, and within this band there is a smaller
with @ =0, we find that rolls become unstable to the small-band of stable rolls. For large®,, the heteroclinic cycle
angle instability before the predicted modulational instabilityassociated with the Kapers-Lortz instability is broken, pro-
can be observedalthough we could clearly find this insta- vided that|€,| is sufficiently large. There is then a band of
bility by restricting the perturbations to be parallel to the stable rolls, but this band need not include rolls aligned with
original rolls). The reason for this is the faster growth rate of €}, ; stable rolls can be aligned at an angl&}g, so that the
the small-angle instability identified in E€R9). In order to  effects of the competing instabilities balance.
eliminate the small-angle instability, the value @fis in- When the Prandtl number is finite, the problem is compli-
creased; we find a value af=3 to be sufficient. Results are cated by the presence of a neutral large-scale flow that
shown for P=0.6, r=1 ande=0.5 with an initial pattern greatly increases the range of potential instabilities of rolls.
consisting of (5,0)-rolls. For a Taylor number of 4G® that These large-scale instabilities include the small-angle form
ap=—9%x10"3, a;=-0.5, «@,=1.0, @3=12.367, a, of the Kippers-Lortz instability8,13], the skewed-varicose
=—13.333, a5=8.889, ag=—0.999, andr=1.546), we instability [19], and a one-dimensional amplitude-
find that, while the (5,0) rolls are initially unstable to the modulation instability{15,16. The small-angle instability is
skewed-varicose instability, this pattern itself becomesmot prevented by}, in the sense that almost all rolls within
modulated in a manner analogous to that of the onethe band of existence remain unstable. Only a very narrow
dimensional instability shown in Fig. 1&. Eventually a range of small-amplitude rolls near the edge of this band can
one-dimensional, steady, modulated roll pattern, shown iibe stable. We have not discussed in detail in this paper the
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skewed-varicose instability, since its behavior is similar tothe rolls. In all cases, the instabilities evolve to a new state
the nonrotating casil8]. The one-dimensional instability is consisting of pure rolls of a different alignment or a hetero-
also unaffected by2,,. clinic cycle between roll states; there is no evidence of more

We have conducted a sequence of numerical experimentomplex steady-state patterns, such as wavy rolls. However,
to illustrate these various instabilities and to study their nonimore complicated patterns are observed if the box size is
linear development. The numerical results are consistent witincreased, or if the simulations are carried out further from
the analytical predictions for the stability and instability of onset[8,12,18.
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