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Instability of convection in a fluid layer rotating about an oblique axis

S. L. Pollicott, P. C. Matthews, and S. M. Cox
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

~Received 19 August 2002; published 9 January 2003!

We analyze thermal convection in a fluid layer confined between isothermal horizontal boundaries at which
the tangential component of the fluid stress vanishes. The layer rotates about an oblique, nearly vertical axis.
Using a model set of equations forw, the horizontal planform of the vertical velocity component, andc, a
stream function related to a large-scale vertical vorticity field, we describe the instabilities of convection rolls.
We show how the usual Ku¨ppers-Lortz instability, which leads to a continual precession of the roll pattern, can
be suppressed by the oblique rotation vector. Of particular interest is the small-angle instability of rolls, to
perturbations in the form of rolls that are almost aligned with the primary rolls; at finite Prandtl number, this
instability is not prevented by the horizontal component of the rotation vector, unless this component is
sufficiently strong, in which case stability is confined to small-amplitude rolls near the marginal stability
boundary. A one-dimensional instability leading to amplitude-modulated rolls is unaffected by the oblique
rotation. Numerical simulations of the model equations are presented, which illustrate the instabilities ana-
lyzed.

DOI: 10.1103/PhysRevE.67.016301 PACS number~s!: 47.54.1r, 47.20.Bp, 47.27.Te, 47.20.Lz
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I. INTRODUCTION

Convection in a horizontal fluid layer rotating about
oblique axis is the archetypal model problem for convect
in planetary atmospheres. It also represents an interes
pattern formation problem, since the vertical and horizon
components of the rotation vectorV tend to have competing
effects on the stability of convection rolls. First we recall th
the vertical componentVv tends to lead to the Ku¨ppers-
Lortz instability @1,2#, which causes convection rolls to pre
cess continually about the vertical in the same sense asV.
However, thehorizontal componentVh tends to lead to a
preference for rolls whose axes are aligned withVh ~see, for
example, Refs.@3–7#!. In this paper we describe the influ
ence of the competition between these two effects upon
stability of convection rolls, through asymptotic analysis a
numerical simulation.

Of particular interest is the influence of a large-scale v
tical vorticity mode upon the convection, which is inves
gated here in the analytically tractable case of ‘‘idea
boundary conditions~in particular, zero tangential fluid stres
at the boundaries!, so that the large-scale mode is on
weakly linearly damped. However, this mode is also kno
to play a significant role when more realistic, rigid, bounda
conditions are adopted, even though its amplitude is sign
cantly less in that case.

We analyze the convection through a pair of coupled n
linear partial differential equations for the vertical veloci
componentw, and a stream functionc that describes the
large-scale motions. In these model equations, the de
dence of the flow field upon the vertical coordinatez is fac-
tored out, so that the model directly involves the depende
of w andc upon only the horizontal coordinatesx andy, and
time. The model is based on that of Ponty, Passot, and Su
@8#, and is similar to other models, for example, Re
@9–11#.

We begin our analysis by studying the Ku¨ppers-Lortz in-
stability of convection rolls, treating first the comparative
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straightforward case of infinite Prandtl number, so that
large-scale vertical vorticity mode plays no significant ro
Our broad conclusion is that rolls sufficiently well aligne
with Vh are stabilized to the Ku¨ppers-Lortz instability, pro-
vided uVhu is sufficiently great. Our results correct those
Roxin and Riecke@12#.

When, by contrast, the Prandtl number is finite, t
Küppers-Lortz instability is more complicated. The usu
weakly nonlinear analysis of this instability proceeds by co
sidering a ‘‘primary’’ set of rolls, with wave vectork0, per-
turbed by a ‘‘secondary’’ set of rolls, with wave vectork1. In
the weakly nonlinear formulation near the onset of motio
where the Rayleigh numberR is close to its critical value
Rc , both uk0u and uk1u are roughly equal to the critical wav
numberkc of the linear stability theory. Provided that th
anglef betweenk0 andk1 is not near 60° or 120°, the wav
vectorsk06k1 of the second-order harmonics lie away fro
the circle of critical wave vectors, i.e., they are not resona
and their amplitudes are slaved to those of the primary
secondary rolls. However, when the anglef is small, uk0
2k1u!kc and the corresponding harmonic generates a la
scale motion@2#. In the case of stress-free horizontal boun
aries, as contemplated here, this motion is only wea
damped, and so must explicitly be included, together w
the near-marginal mode with wave vector 2k02k1, in the
analysis of the instability in the small-f limit. The treatment
of this limit has been given elsewhere when the rotation v
tor is exactly vertical@13#: there it is found that when (R
2Rc)/Rc5O(e2), where 0,e!1, all rolls are unstable to
perturbations oriented at an anglef5O(e2/5), regardless of
the vertical rotation rate. On the other hand, instability
either the usual Ku¨ppers-Lortz disturbances, which havef
5O(1), or to disturbances withf!e2/5, requires that the
vertical rotation rate exceed some threshold value. The
fects of a weakly tilted rotation vector are explored belo
and it is shown that some rolls~those of the smallest ampli
tude, farthest from being aligned withVh) may be stabilized
against the small-angle Ku¨ppers-Lortz instability.

To facilitate the analysis of the small-angle Ku¨ppers-Lortz
©2003 The American Physical Society01-1
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instability, we assume for algebraic convenience thatuk0u
5uk1u5kc , although exact equality is not essential to t
instability. If this assumption is relaxed, so thatuk0u,uk1u
'kc , then a further instability is found, this time prese
even for the exact alignment between the original and
perturbing rolls~i.e., for f50), through an analog of the
Eckhaus instability@14#. However, in the presence of non
zero Vv , this instability is essentially modified from th
usual Eckhaus instability in two respects@15–17#. First,
rather than being purely a phase instability, it may hav
significant impact on the amplitude of the convection a
can lead to a pattern of stable, strongly localized convect
Second, ifVv is sufficiently large, and the Prandtl numb
not too large, thenall rolls may be susceptible to this insta
bility at onset, generally leading to localization of the co
vection, to convection in a planform other than rolls, or
time-dependent convection.

There are, of course, many other instabilities to which
rolls may be susceptible, including the zigzag and skew
varicose instabilities. A detailed analysis of these other in
bilities is given by Pollicott@18#.

Our analysis of the various instabilities is compared w
numerical simulations in Sec. VI, which allow us to dete
mine the nonlinear development of the instabilities.

II. MODEL EQUATIONS FOR ROTATING CONVECTION

In this section, we introduce a reduced two-dimensio
model for rotating convection in a Boussinesq fluid. Su
models have been widely used for studying convect
@8–11# and have the advantage of greatly simplifying bo
analytical and numerical studies, while capturing the ess
tial features of the convection.

Our model is essentially that of Pontyet al. @8#, derived
for the caseVh50, but with an additional linear term@6#
reflecting the presence of a small horizontal componen
the rotation vector. Its derivation is now briefly sketched.
is assumed that the parameters are such that the ons
convection is steady, and that the horizontal boundaries a
top and bottom of the fluid layer are stress-free and isoth
mal. The horizontal component of the rotation vector is ch
sen to point in they direction, soV5(0,Vh ,Vv). The solu-
tion to the governing equations is then expanded in pow
of a small parametere, proportional to the square root of th
excess Rayleigh number, assuming that convection is c
to onset and thatVh5O(e). As Pontyet al. @8# indicate, it is
necessary to make some simplifying assumptions concer
the form of the solution at second order in order to compl
the derivation of a relatively simple model. The price that
pay for this relative simplicity is that the resulting mod
equations are not strictly asymptotic, and involve terms
mixed asymptotic order. The final dimensionless equati
involve the vertical velocity componentw(x,y,t), where the
dependence on the depth of the fluid layer has been fact
out, and a stream functionc(x,y,t) for the mean flow. It is a
consequence of the slight deviation from a vertical rotat
axis that the only influence of nonzeroVh is through an
additional linear term in the equation forw; the form of this
term was derived by Busse@6#. The model equations are
01630
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twt5@e2r 2~11¹2!2#w1e2v2wyy2Mw2a1“w•“M

1a2ẑ•“3@ u“wu2“w#2a3ẑ•~“w3“c!2a4w¹2c

2a5“w•“¹2c, ~1!

¹2c t5Pr¹4c1a0ẑ•“3~“w¹2w!1a6“•~“w¹2w!,
~2!

where

M5w21“w•“w.

The parameterv is proportional toVh @6#, and appears only
in one linear term in Eq.~1!; this term alone breaks th
rotational invariance of the system. The paramet
a0 , . . . ,a6 andt are functions of the Prandtl number Pr an
the Taylor number, andr is a rescaled Rayleigh number@8#.
The termsa2 , a4 , a5, anda6 are odd functions ofVv , and
these terms break the reflection symmetry of the system
Vv.0, thena2 anda5 are positive buta4 anda6 are nega-
tive. The model has the symmetryw→2w, which is inher-
ited from the up-down symmetry of the original problem.

This model shows similarities to other two-dimension
convection models that include a pattern modew and a large-
scale vorticity modec. Unlike the models of Neufeldet al.
@10# and of Cox@11#, however, our model allows the large
scale mode to evolve in time, rather than be enslaved to
pattern modew. Our model corresponds closely to that
Ponty et al. @8#, but with the addition of the term inv. As
discussed by Roxin and Riecke@12#, we can regardv as
representing any effect that breaks the isotropy of the syst
such as an oblique rotation axis~as here!, or a weak imposed
flow.

The basic state of no motion isw5c50, and when lin-
earized about this state Eqs.~1! and ~2! decouple, so that a
mode with wave vectork5(k,l ) has growth ratelw or lc ,
where

tlw5e2r 2~12uku2!22e2v2l 2, ~3!

lc52Pruku2. ~4!

In the isotropic case (v50) the modes of maximum growth
rate are those on the circleuku251, but for nonzerov this
situation is further restricted so that the mode of maxim
growth rate occurs whenk51, l 50, i.e., for rolls with their
axes aligned with the horizontal component of the rotat
vector. For rolls that are not aligned, the mode of maxim
growth rate hasuku511O(e2).

On large horizontal scales,c is only weakly damped, re-
flecting the fact that a uniform flow is neutrally stable wi
stress-free boundaries. This near-neutral large-scale m
flow plays a crucial role in modulational instabilities of th
convection@13,16,19#.

In Sec. III we consider the simpler case of infinite Pran
number, whenc may be neglected. A more complicated ge
eral case is discussed in Sec. IV.
1-2
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III. INFINITE PRANDTL NUMBER

In the limit of large Prandtl number Pr,c is strongly
damped and models~1! and~2! reduce to the single equatio

twt5@e2r 2~11¹2!2#w1e2v2wyy2w~w21q“w•“w!

2a1“w•“~w21“w•“w!

1a2ẑ•“3@~“w•“w!“w#. ~5!

Here we have introduced a parameterq, to facilitate compari-
son with the model of Roxin and Riecke@12# ~for which we
sett51, q50, a150); for our model,q51.

For e!1 we expand the solution to Eq.~5! as

w5ew11e2w21e3w31•••,

and consider terms at successive orders ofe in Eq. ~5!. We
consider the stability of one set of rolls~A! to a second set o
rolls ~B! whose axes lie at some anglef to those of theA
rolls. Thus

w15$A~T!ei (x cosu1y sin u)1c.c.%

1$B~T!ei [x cos(u1f)1y sin(u1f)]1c.c.%, ~6!

whereT5e2t, representing rolls whose axes make angleu
and u1f with the y axis, as shown in Fig. 1. We hav
assumed for simplicity that both sets of rolls have a wa
vector on the critical circleuku251. At O(e3) we find thatA
andB evolve according to

tA85rA2v2~sin2u!A2~31q!AuAu222@31q1a2sin 2f

1a1~12cos 2f!#AuBu2,

tB85rB2v2sin2~u1f!B2~31q!BuBu222@31q

2a2sin 2f1a1~12cos2f!#BuAu2.

These equations collapse to those of Ref.@12# for the appro-
priate parameter values.

We now consider the stability of theA rolls to perturba-
tions in the form ofB rolls. With no loss of generality, the
amplitudeA may be taken to be real.

FIG. 1. Geometry of the axes of theA andB rolls in relation to
the horizontal component of the rotation vector.
01630
e

A. Küppers-Lortz instability for vÄ0 „isotropic case…

If v50, theA rolls exist forr .0 and have amplitudeA0,
where

A05A r

31q
.

Perturbations to the amplitude of theA rolls are damped, bu
perturbations in the form ofB rolls grow like elT5ele2t,
where the growth ratel satisfies

tl

r
52112

a2sin 2f2a1~12cos 2f!

31q
. ~7!

For the Roxin and Riecke@12# case, Eq.~7! becomes

l

r
5211

2a2sin 2f

3

and the maximum growth rate is thus achieved whenf
5p/4, giving rise to Küppers-Lortz instability ifa2.aKL
[ 3

2 .
In our more general case, from Eq.~7!, l is maximized

when tan2f5a2 /a1, and the condition for instability is

2112
Aa1

21a2
22a1

31q
.0,

which can be written alternatively as

a2
2.~31q!2/41a1~31q!.

These results are independent of the orientation of the o
nal rolls, and show that rolls become unstable to
Küppers-Lortz instability ifa2 is sufficiently large.

B. Küppers-Lortz instability for vÅ0

In the casevÞ0, the A rolls exist for r .v2sin2u and
have amplitudeA5A0, where

A05Ar 2v2sin2u

31q
.

Perturbations inA are still damped, but now perturbations
B have growth ratel, where

tl52r 2v2sin2~u1f!12v2sin2u

12
a2sin 2f2a1~12cos 2f!

31q
~r 2v2sin2u!. ~8!

It is instructive to begin our discussion of Eq.~8! by consid-
ering the region close to the marginal stability curve, whe
0,A0

2!1 ~i.e., 0,r 2v2sin2u!1). Here the growth rate sat
isfies

tl;v2@sin2u2sin2~u1f!#. ~9!

Thusl can be madepositiveby selecting
1-3
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FIG. 2. Marginal stability curve~heavy line, delineating the region of existence of rolls! and stability regions, according to Eq.~14!, with
r 50.2 and~a! a251 or ~b! a252. The stability of rolls to the Ku¨ppers-Lortz instability is indicated.
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So, just inside the marginal stability curve, the rolls areun-
stable. This instability will be referred to as analignment
instability, since it tends to bring the most poorly align
rolls closer into alignment with the horizontal component
the rotation vector.

Another special case of interest is the rolls withu50,
which are aligned with the horizontal component of the
tation vector. In this case, the growth rate of the Ku¨ppers-
Lortz instability satisfies, from Eq.~8!,

tl52r 2v2sin2f12r
a2sin 2f2a1~12cos 2f!

31q
.

Comparing this expression with the corresponding exp
sion~7! for v50 shows that the growth rate is reduced wh
vÞ0, in other words, the horizontal component of the ro
tion vector inhibits the Ku¨ppers-Lortz instability.

Returning to the general case, we seek, for rolls of a gi
orientation ~i.e., a given value ofu), the most dangerou
mode of instability, by maximizingl over all f in Eq. ~8!.
We then consider the stability boundary, given bylmax50.
In the Roxin and Riecke@12# case

l5r ~211 2
3 a2sin 2f!2v2@sin2~u1f!

1 2
3 ~a2sin 2f23!sin2u#. ~11!

However, the stability boundaries plotted in Ref.@12#, stem-
ming from Eq.~11!, are incorrect, since they are inconsiste
with the result following from Eq.~9! showing that small-
amplitude rolls are always unstable; we correct them bel
In the general case~8!, the growth ratel is maximized when
f5fmax, where

tan 2fmax5
4a2~r 2v2sin2u!2~31q!v2sin 2u

4a1~r 2v2sin2u!1~31q!v2cos 2u
. ~12!

At this value off, the corresponding growth rate satisfie
01630
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tlmax52r 2
v2

2
12v2sin2u2

2a1

31q
~r 2v2sin2u!

1F S 2a2~r 2v2sin2u!

31q
2

v2sin 2u

2 D 2

1S 2a1~r 2v2sin2u!

31q
1

v2cos 2u

2 D 2G1/2

, ~13!

where taking the positive square root ensures that this is
maximum value ofl ~rather than the minimum!. The stabil-
ity boundary for rolls is thenlmax50.

For the parameter values appropriate to the model
Roxin and Riecke@12#, Eq. ~13! simplifies to

lmax52r 2
v2

2
12v2sin2u1Fv4cos22u

4

1S 2a2~r 2v2sin2u!

3
2

v2sin 2u

2 D 2G1/2

. ~14!

Figure 2 shows the stability region for rolls, derived fro
Eq. ~14! when r 50.2, in two cases:a251,aKL and a2
52.aKL . In the former case, Fig. 2~a!, all rolls are stable to
the Küppers-Lortz instability whenv50, and this forces the
stability boundary to have the indicated topology. Asv is
increased, rolls significantly out of alignment are the first
become unstable. By contrast, in the latter case, Fig. 2~b!, all
rolls are Küppers-Lortz-unstablewhenv50, and hence the
stability region has a different topology~it is closed at the
bottom!. Herev must exceed some threshold before the t
dency of rolls to align withv can stabilize them against th
Küppers-Lortz instability. Note that some rolls with positiv
u are unstable forv50, and asv is increased, first becom
stable and then become unstable again. There are two p
cally distinct instability mechanisms acting here: the ‘‘alig
ment’’ instability, caused by the horizontal component of t
rotation vector, and the Ku¨ppers-Lortz instability, caused b
the vertical component. However, these two instabilities c
not be clearly distinguished since their growth rates are gi
by a single formula.

Regardless of the value ofa2 ~provided it is nonzero!, by
virtue of the fact that the fluid layer has a vertical compon
1-4
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of rotation vector, we expect the stability boundary to
asymmetrical aboutu50, since thea2 term breaks the re
flection symmetry of the system. This asymmetry is read
observed in the asymptotic form of the stability boundary
largev, which is found from Eq.~14! to be

u5
6Ar /2

v
1

a2r

6v2
1O~v23!.

By contrast, the two sections of the marginal stability cur
between which rolls exist, are symmetrical and are given

u5
6Ar

v
1O~v23!.

At leading order therefore, for largev, the width of the
region of stable rolls is narrower than the width of the reg
in which the rolls exist by a factor ofA2. The same resul
holds for the more general stability boundary~13!.

A further noteworthy consequence of the asymmetry
the stability boundary arises when it has the topology of F
2~b!. In this case, asv is increased, the first rolls to b
stabilized to the Ku¨ppers-Lortz instability are not thos
aligned with Vh ; instead, the minimum of the stabilit
boundary corresponds to the rolls with some positive va
of u. This preference illustrates a balance between the ph
cal influences of the two components ofV, one tending to
force alignment with they axis, the other tending to turn roll
counterclockwise. It is not possible to write down a simp
analytical expression for this preferred value ofu in general,
but when a2 just exceeds the threshold valueaKL , it is
readily determined that the stability boundary takes the fo

v2;
2~a2 /aKL21!r

cos 2u1sin 2u
,

and hence that the first rolls to be stabilized to the Ku¨ppers-
Lortz instability have

u; 1
2 tan2115 1

8 p'0.39.

Results for the more general stability boundary~13! show the
same qualitative features as discussed above and as sho
Fig. 2. Further details are given in Ref.@18#.

IV. FINITE PRANDTL NUMBER

We now turn to the more complicated case of fin
Prandtl number Pr, so the governing equations are Eqs~1!
and ~2!, and proceed as in the case Pr5`, but also expand-
ing the mean flow, so that

w5ew11e2w21•••, c5e2c21•••. ~15!

As when Pr5`, w1 takes the form Eq.~6! andw250. By
considering the terms atO(e2) we find
01630
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c25$c1~T!ei $x[cosu1cos(u1f)] 1y[sinu1sin(u1f)] %1c.c.%

1$c2~T!ei $x[cosu2cos(u1f)] 1y[sinu2sin(u1f)] %1c.c.%

1$cu~T!e2i (x cosu1ysinu)1c.c.%

1$cf~T!e2i (x cos(u1f)1ysin(u1f))1c.c.%,

where

c152
a6AB

2Pr~11cosf!
,

c252
a6AB*

2Pr~12cosf!
,

cu52
a6A2

8Pr
,

cf52
a6B2

8Pr
.

At O(e3) in Eq. ~1! we find thatA and B now evolve
according to

tA85rA2v2~sin2u!A2aAuAu22b1AuBu2,

tB85rB2v2~sin2~u1f!!B2aBuBu22b2BuAu2,

where

a541S a412a5

2Pr Da6 ~16!

and

b652@46a2sin 2f1a1~12cos 2f!#12S a41a5

Pr Da6

7
a3a6sin 2f

Pr~12cos 2f!
.

Let us now consider theA-rolls having amplitudeA
5A0, where

A05Ar 2v2sin2u

a
. ~17!

Their stability is determined by the growth ratel of pertur-
bations to theB-rolls, which satisfies

tl5r 2v2sin2~u1f!2b2A0
2 . ~18!

Analysis of this expression forl is in general rather compli-
cated. In the limit Pr→`, Eq. ~18! reduces to~8!; for finite
Pr the region of stability of rolls is modified. Figure 3 show
the growth rate as a function off for a typical case. Note
that the growth rate has a maximum at a finite value off,
but diverges asf→0. This divergence is a generic feature
the Küppers-Lortz instability with stress-free boundari
@2,8,13#. Rolls are always unstable to small-angle perturb
tions, and the introduction of a horizontal component of t
1-5
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rotation vector does not appear to prevent this instab
~except for the rolls very close to the marginal curve—s
Sec. IV A!.

In what follows, we shall be particularly concerned wi
the limit f→0, in which the original rolls and the perturbin
rolls are almost in alignment with each other. We theref
note at this point that the coefficientsc1, cu, andcf are all
bounded in this limit, but that the large-scale mean-fl
componentc2 is singular, with

c2;2
a6AB*

Pr
~f221 1

12 1 1
240f21••• !,

indicating that the calculation needs to be considered m
carefully whenf is small. In the limitf→0, we find from
this analysis that

tl;2
a3a6A0

2

Prf
. ~19!

This breakdown in the theory reflects our incorrect treatm
of the modec2, which is treated as slaved to theA and B
modes; whereas when these two sets of rolls are alm
aligned, this mode is dynamically significant in its own righ

A. The limit of nearly aligned rolls

In order to resolve the divergence of the growth rate
the instability of one set of the rolls to a second set, nea
aligned with the first, we need to consider three perturbati
of significance, as illustrated in Fig. 4. We simplify the fo
lowing analysis by assuming that both the original rolls a
one of the perturbing rolls have critical wave numbers.
thus consider the stability of theA0 rolls with wave vector
(k,l ), where

k21 l 251, ~20!

FIG. 3. Growth rate as a function off, according to Eq.~18!,
when t51.081, a050.718, a1520.4, a252.0, a358.650, a4

520.557,a550.03712,a6520.696~corresponding to a Prand
number of 10 and a Taylor number of 40!, r 51, v50.59, u
50.9.
01630
y
e

e

re

t

st

r
ly
s

d
e

to perturbations with wave vectors (k1m,l 1n) (A1 rolls!,
(k2m,l 2n) (A2 rolls!, (m,n) (C mode!, where

~k1m!21~ l 1n!251. ~21!

In our prior notation,

k5cosu, k1m5cos~u1f!,

l 5sinu, l 1n5sin~u1f!. ~22!

In view of Eqs.~20! and ~21!, it follows that

2~km1 ln !1m21n250. ~23!

Then from Eq.~22!, it follows that sinf5kn2lm. To study
nearly aligned rolls, we suppose thatf is small and hence so
are the wave numbersm and n; in this limit, f;kn2 lm
;(m21n2)1/2.

It is not possible to write down self-consistent nonline
amplitude equations for modesA0 , A1 , A2, andC as in the
preceding section. This is because, for smallf, the interac-
tion of the C mode with each of theA modes generates
further near-marginalA mode. Instead, we consider theA0
mode to be the basic state and the other modes to be s
perturbations; it is then possible to derive asymptotica
self-consistent linearized equations for the perturbations.

In order to determine the stability of rolls, we consid
expanding a solution to Eqs.~1! and ~2! in the form

w5$eA0ei (kx1 ly)1dA1~T!ei [(k1m)x1( l 1n)y]

1dA2~T!ei [(k2m)x1( l 2n)y]%1c.c.1•••,

c5dC~T!ei (mx1ny)1c.c.1•••,

whered is an infinitesimal quantity, andA1 , A2, andC rep-
resent perturbations to the rolls, whose amplitude is given

A05Ar 2v2l 2

a
. ~24!

FIG. 4. Wave vectors of the significant modes for an analysis
the small-angle instability at finite Prandtl number. Part of the cir
of critical wave vectors is shown. The important modes whenf is
O(1) are the original rollsA0 and the perturbing rollsA1 ~both with
critical wave numbers, for analytical convenience!. In addition,
when f is small, other significant modes areC, the large-scale
mode driven by interactions ofA0 andA1 rolls, andA2, perturbing
rolls ~with nearly critical wavenumber! driven by interactions of the
A0 rolls andC mode, or by cubic interactions ofA0 andA1 rolls.
1-6
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Although a variety of small-f scalings is necessary in orde
to describe fully the stability of theA0 rolls, the most impor-
tant is the scaling that allows a matching to the appare
divergent Küppers-Lortz result~19!, resolves the divergenc
of the growth rate, and contains the maximum growth ra
When v50, as shown by Cox and Matthews@13#, the ap-
propriate scaling is

m,n5O~e2/5!, ~25!

km1 ln5O~e4/5!, ~26!

A1 ,A25O~1!, ~27!

C5O~e1/5!, ~28!

with a growth rate

l5O~e8/5!. ~29!

If we adopt this scaling for the present problem, in whichv
does not necessarily vanish, we find thatA1 , A2, and C
satisfy

tlA15a3A0~kn2 lm!C,

tlA2524~m21n2!2A22a3A0~kn2 lm!C,

05Pr~m21n2!2C1a6~kn2 lm!2A0~A11A2!,

independent ofv. Thus the growth ratel satisfies

t2l214tl~m21n2!21
4a3a6

Pr
~kn2 lm!3A0

250. ~30!

The scalings~25!–~29! allows us to match the apparent
divergent growth rate of the Ku¨ppers-Lortz analysis in the
limit f→0 to a regular, nondivergent expression valid
small angles between the original and perturbing rolls, si
taking the limitm21n2→` in Eq. ~30! gives

tl;2
a3a6A0

2~kn2 lm!3

Pr~m21n2!2
;2

a3a6A0
2

Prf
, ~31!

which agrees with the divergent small-angle limit~19! of the
Küppers-Lortz instability obtained above. Hence, as
scribed in Ref.@13# for the casev50, all rolls are unstable
in this scaling. While one might have expected the prese
of a nonzero horizontal component of the angular veloc
vector to exert a stabilizing influence on rolls with approp
ate orientation, its magnitude here is too small to do so@its
contribution to the growth rate isO(e2), which is asymptoti-
cally smaller than the growth rate~29! found here#.

Increasing the magnitude ofv stabilizes some of the rolls
as we now demonstrate. We begin by noting that the in
bility in Eq. ~30! is forced by the term

4a3a6

Pr
~kn2 lm!3A0

2 .
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Rolls might thus escape instability if this term could som
how be made smaller than the scalings~25!–~29! suggest.
For example, near the edge of the region of existence of
original rolls, their amplitudeA0, and hence this instability-
generating term, is small. Thus we now explore how to r
cale quantities so as to include both the ‘‘small-angl
Küppers-Lortz instability illustrated in Eq.~31! and the
alignment instability of nonzerov @illustrated in Eq.~9! for
Pr5`]. It turns out that in order to introduce stabilizin
terms,v must be large and sol must be small, to maintain
the asymptotic balancev l 5O(1) implicit in Eq. ~24!.

The actual derivation of the new scalings is rather al
braically involved. We proceed by considering the terms t
arise in equations for the quantitiestd(A11A2)/dt, td(A1
2A2)/dt anddC/dt. We choose a scaling so as to ensure
presence of certain terms that will give a balance between
small-angle instability described above, and in more de
by Cox and Matthews@13#, and the tendency to align with
nonzerov. A considerable amount of trial and error is su
pressed in the following description. In the equation f
td(A11A2)/dt, the key terms are proportional to

e2v2n2~A11A2!, e2v2ln~A12A2!, n4~A12A2!.
~32!

Likewise, in the equation fortd(A12A2)/dt, the key terms
are proportional to

e2v2n2~A12A2!, eA0nC. ~33!

Finally, in the equation fordC/dt, the time derivative itself
is asymptotically smaller than those terms retained, of wh
the key terms are

Prn4C, en2A0~A11A2!. ~34!

With no loss of generality, we specify the order of one of t
perturbation quantities by settingA12A25O(1). Then, by
balancing the terms indicated, we find

l 5O~e223g!,

n5O~eg!,

m5O~e2g!,

v5O~e3g22!,

A05O~e (13g26)/2!,

A11A25O~e2(122g)!,

A12A25O~1!,

C5O~eg/2!,

with k21;2 1
2 l 2, whereg must lie in the range 6/13,g

,1/2 so that terms omitted from Eqs.~32!–~34! remain as-
ymptotically smaller than those retained. Corresponding
the growth rate is
1-7
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l5O~e8g22!.

Note that the balancev2l 25O(1) is retained, consisten
with the scaling implied by expressions such as Eq.~24!,
where we have used Eq.~22!.

The governing equations atO(e4g), O(e8g22) and
O(e9g/2), respectively, i.e., leading order in each case, a

tl~A11A2!52e2v2n2~A11A2!2~2e2v2ln14n2m!

3~A12A2!,

tl~A12A2!52e2v2n2~A12A2!12ea3A0nC,

05Prn4C1ea6n2A0~A11A2!.

Thus the growth ratel satisfies

t2l212e2v2n2tl1e4v4n4

2
4e2~e2v2l 12mn!a3a6A0

2

Pr
50. ~35!

In analyzing the stability of these small-amplitude rolls a
cording to Eq.~35!, we first note that there can be no osc
latory instability because if the imaginary partl i is nonzero
then the real partl r52e2v2n2/t<0. Thus in our examina-
tion of instability, we restrict attention to the case of reall.

For a given set of rolls, we aim to maximizel over n
~with 2m1n250 to this order!. For this purpose we intro
duce

L5tl

and

Q5
Pr

4e2~2a3a6!A0
2
.0 ~36!

so that the scaled growth rateL satisfies

L212e2v2n2L1e4v4n41
e2v2l 2n3

Q
50.

From this formula it is immediately apparent that rolls wi
l ,0 are unstable, but that rolls withl .0 are stable to per
turbations with either small or large values ofn. We now
seek to determine whether any rolls withl .0 may be stable
to all perturbations, regardless ofn. It is readily determined
that L takes its maximum valueLmax whenn5nmax, which
satisfies

nmax
3 2

9nmax
2

16e4v4Q
5e2v2l , ~37!

with

Lmax52e2v2nmax
2 1

3nmax

4e2v2Q
. ~38!
01630
-

The expressions~37! and~38! can profitably be analyzed b
noting that the boundaryLmax50 between the stable an
unstable rolls arises when

nmax5
3

4e4v4Q

and hence the threshold corresponds to rolls with wave n
ber l 5 l c , where

l c5
27

256e14v14Q3
.

In view of Eqs. ~24! and ~36!, this equation givesl c only
implicitly, and it is somewhat more revealingly written as

r 2v2l c
25S 4a3e8v14P3l c

3

27~2a3a6!3 D 1/3

. ~39!

Since the term on the right-hand side of Eq.~39! is small, we
may approximatel c by Ar /v in this term, leading to

l c;
Ar

v
2

~4e8v8!1/3aPr

6~2a3a6!
. ~40!

This indicates the location of the stable rolls just inside
marginal stability boundary and shows how the width of t
band of stable rolls increases asv increases.@The alternative
casenmax50, which appears from Eq.~38! to offer the pros-
pect of also givingLmax50, is ruled out since, by Eq.~37!, it
can apply only tol 50; however, whenl 50, L is in fact
maximized for nmax59/16e4v4Q, giving Lmax
527/256e6v6Q2.0, and instability.# By analyzing Lmax
nearl 5 l c , we find that

Lmax52
8e8v8Q

9
~ l 2 l c!1O„~ l 2 l c!

2
…

as l 2 l c→0. Thus rolls are predicted to be stable forl just
greater thanl c , i.e., for

l c, l ,
Ar

v
.

Such a conclusion differs qualitatively from that found abo
for the caseP5`, where rolls near the marginal curve a
unstable. The resolution of this apparent discrepancy is n
immediately obtained by taking the limit Pr→` in Eq. ~39!,
since we then findl c50, which suggests that all rolls with
l .0 are stable in this limit. However, this conclusion is u
warranted, since further scalings would need to be con
ered to address properly the limit Pr→` @we can see this by
noting, from~38!, that our computed maximum growth ra
Lmax becomes small in this limit, and hence additional ter
must be included#.

In this analysis of the small-angle Ku¨ppers-Lortz instabil-
ity we have assumed that both theA0 rolls and theA1 rolls
have exactly critical wave number. This assumption, wh
1-8
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not crucial to the presence of the instability, yields consid
able analytical simplifications. However, the assumption
too restrictive to capture a further instability that manife
itself when theA0 andA1 rolls are in extremely close align
ment, in which case it must be relaxed. This instability
analyzed in the following section.

V. ONE-DIMENSIONAL MODULATIONAL INSTABILITY

In the limit of extremely close alignment between t
original and the perturbing rolls, the above scalings ne
reconsideration, in order to permit analysis of an Eckha
like instability @14–17#. Here we allow the wave vector o
the original rolls to lie slightly off the critical circle and
(m,n) to be roughly parallel to (k,l ) ~rather than roughly
perpendicular, as in the preceding section!, so that

kn2 lm!km1 ln!1, ~41!

rather than the scalings leading to Eq.~30!. From eq.~41!
combined withk21 l 2;1 it follows that

~km1 ln !2

m21n2
;1.

In the absence of the large-scale modec, such consider-
ations yield the well-known Eckhaus instability; however,
characteristics are significantly modified by the presence
the slowly damped vertical vorticity mode@15,16#. In par-
ticular, whereas the Eckhaus instability involves distortio
to the phase of the pattern, the corresponding instability h
distorts both the phase and the amplitude.

Near the onset, we consider a basic state of rolls in wh

w5eA0ei (kx1 ly1epx1eqy)1•••, c50

with k21 l 251. The amplitude of these rolls is, to leadin
order ine,

A05Ar 2v2l 224~kp1 lq !2

a
,

wherea is given in Eq.~16!.
The stability of the rolls is investigated by writing

w5e„A01V~T!ei e(mx1ny)

1W* ~T!e2 i e(mx1ny)
…ei (kx1 ly1epx1eqy)1c.c.1•••,

c5U~T!ei e(mx1ny)1c.c.1•••,

where T5e2t, and by linearizing in the small disturbanc
amplitudesU, V andW.

At O(e3) in Eq. ~1! andO(e4) in Eq. ~2!, respectively, we
find that

tV852aA0
2~V1W!1a4A0~m21n2!U24~km1 ln !

3@2~kp1 lq !1~km1 ln !#V,
01630
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tW852aA0
2~V1W!1a4A0~m21n2!U

14~km1 ln !@2~kp1 lq !2~km1 ln !#W,

U852Pr~m21n2!U1a6A0~V1W!.

Although, in principle, this system allows both oscillato
and monotonic instabilities, we find in practice that t
monotonic instability is observed, and for small values ofm
and n. The condition for instability in the limitm,n→0 is
readily found to be

A0
2@a6~a422a5!28Pr#116Pr~kp1 lq !2.0. ~42!

In particular,all rolls are unstable if

a6~a422a5!.8Pr.

Since a6a4.0 and a6a5,0, all rolls are unstable to the
one-dimensional instability of Matthews and Cox@15# at suf-
ficiently small Prandtl number. This instability is not pre
vented by the horizontal component of the rotation vectorv;
the only effect ofv is to reduce the amplitude of the rolls,
they happen not to be aligned with they axis.

It is straightforward to see that the stability boundary f
this instability reduces to that for the usual Eckhaus insta
ity when the effects of the coupling to the large-scale mo
become negligible, e.g., whena6→0 or Pr→`. In this limit,
the familiar factor-of-three difference between the expr
sions for the marginal and Eckhaus stability boundaries
comes clear if the condition~42! for instability is written in
the form

r 2v2l 2512~kp1 lq !2,

which should be compared with the corresponding expr
sion

r 2v2l 254~kp1 lq !2

for the marginal stability boundary.

FIG. 5. Nonlinear evolution of mode amplitudes under t
Küppers-Lortz instability in Eq.~5!, with v50 and a252. The
instability continues indefinitely, forming a heteroclinic cycle.
1-9
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TABLE I. Comparison between numerical and theoretical stability thresholds for rolls in various a
ments, for cases wherea2,aKL so that rolls are stable for smallv. The results forf5fmax give the
threshold corresponding to Eq.~13!, which is maximized over all orientations of perturbing rolls, while tho
for f52u give the theoretical threshold taking into account only those modes that can be accommod
the computational box.

Condition for stability
Rolls r a2 Numerics Theory (f5fmax) Theory (f52u)

~3,4! 0.2 1.0 v,0.41560.005 v,0.406 v,0.415
(3,24) 0.2 1.0 v,0.25560.005 v,0.255 v,0.255
~4,3! 0.3 0.5 v,0.65560.005 v,0.659 v,0.660
(4,23) 0.3 0.5 v,0.55560.005 v,0.554 v,0.564
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VI. NUMERICAL SIMULATIONS

In this section we present numerical simulations of
model ~5!, for infinite Prandtl number, and Eqs.~1! and ~2!,
for finite Prandtl number. These simulations allow compa
son with the analytical results presented above for vari
instabilities of the roll pattern, and also investigation into t
nonlinear development of these instabilities, which is n
otherwise amenable to the analysis. Our code is pseudos
tral, and periodic boundary conditions are applied in b
horizontal directions. In each simulation the computatio
box is square, with sides of lengthL510p. This size of box
allows five pairs of rolls with critical wave numbers parall
to either side of the box. Adequate numerical resolution
obtained using 64364 Fourier modes. Time stepping
achieved through the so-called exponential time differenc
method@20#.

We name rolls according to their orientation as follow
rolls with wave vector (k1 ,k2) are called (k1 ,k2)L/2p rolls.
For example, rolls with critical wave numbers and axes p
allel to the y axis are (5,0) rolls, or, equivalently, (25,0)
rolls. Since (i , j ) rolls are equivalent to (2 i ,2 j ) rolls, we
may specify thati>0. This periodic computational box thu
allows the following six critical rolls: (5,0), (4,63), (3,
64), and (0,5) rolls, corresponding tou50°, u'637°,
u'653°, andu590°, respectively.

The initial condition for each of our simulations takes t
form of a roll pattern in one of these orientations added t
small random perturbation.
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A. Infinite Prandtl number

First we simulate the infinite-Prandtl number model~5!
for various values ofr, v, anda2, fixing e250.2, t51, and
a1520.4, and compare our results with those of Sec.
We carry out two sets of simulations, distinguished by t
stability of rolls when v50. In the first set,a2,aKL

'1.55, and all rolls are stable to the Ku¨ppers-Lortz instabil-
ity whenv50; in the second seta2.aKL , and all rolls are
unstable whenv50 ~i.e., the stability curves have the to
pologies of Figs. 2~a! and 2~b!, although the parameter va
ues are different there from those appropriate here!. For each
initial orientation of the pattern, we carry out a series
simulations for different values ofv, noting where the sta-
bility of the roll pattern changes. Tables I and II summari
the results obtained from the various simulations. Note t
the finite size of the computational box has the conseque
that the theoretical stability boundary is shifted slightly, sin
perturbation rolls withf5fmax are not generally permitted
in the box, and it is more appropriate to compute the stabi
boundary using insteadf52u ~Table I! or the valuef
5fn corresponding to the most unstable mode found in
numerical simulations~Table II!.

Consider first the simulations fora2,aKL , correspond-
ing to the parameter values in Table I. Whenv50, all rolls
are stable, regardless of their orientation. The (5,0) rolls
main stable asv is increased, but, asv exceeds various
threshold values, the (3,64) and (4,63) rolls are destabi-
lized in turn. In our simulations, the nonlinear developme
of the instability reveals that they are eventually replaced
lign-

f
ost
TABLE II. Comparison between numerical and theoretical stability thresholds for rolls in various a
ments, witha2.aKL . As in Table I, the numerical stability thresholds are determined to within60.005. The
results forf5fmax give the threshold corresponding to Eq.~13!, which is maximized over all orientations o
perturbing rolls, while those forf5fn give the theoretical threshold taking into account only the m
unstable mode found in our numerical simulations, compatible with the finite computational box.

Condition for stability
Rolls r a2 Numerics Theory (f5fmax) Theory (f5fn)

~5,0! 0.2 2.0 0.255<v 0.283<v 0.259<v
~3,4! 0.2 2.0 0.265<v<0.425 0.327<v<0.425 0.307<v<0.425
~5,0! 0.2 3.0 0.515<v 0.574<v 0.570<v
~4,3! 0.2 3.0 0.385<v<0.624 0.401<v<0.622 0.395<v<0.622
1-10
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a stable pattern of (5,0) rolls. Thus whenv is sufficiently
large, rolls are forced to align withVh , as one might expect

By contrast, whena2.aKL , all rolls are unstable to the
Küppers-Lortz instability whenv50. Figure 5 shows the
evolution of mode amplitudes over one cycle of the Ku¨ppers-
Lortz instability for v50 and a252 ~cf. Ref. @13#!. The
initial state consists of (3,4) rolls; these are unstable to
25) rolls, which themselves are unstable to (4,23) rolls. In
turn the (4,23) rolls are replaced by (5,1) and then (3,
rolls, thereby completing the cycle, which then repeats
definitely, with a noise-dependent time scale determined
numerical precision. Note that the (1,25) and (5,1) rolls do
not have a critical wave number. Figure 6 shows the evo
tion of the pattern atv50.425 from an initial state of (3,4)
rolls. Here, these rolls are predicted to be unstable to pert
ing rolls with 296.7°<f<273.8°, and indeed we find in
our simulations that the (3,4) rolls are eventually replaced
(4,23)-rolls ~which havef590°). However, these rolls ar
themselves unstable~regardless of the value ofv when a2
52), and are eventually replaced by (5,0) rolls, which a
stable. Figure 7 shows the corresponding evolution of
mode amplitudes.

For a2.aKL , the stability boundary for rolls has a min
mum at someu.0, and for sufficiently large values ofa2

FIG. 6. Evolution ofw in Eq. ~5!, with v50.425 anda252. ~a!
(3,4) rolls att50. ~b! Significant perturbation in the form of (4
23) rolls at t511 100. ~c! Rectangle pattern att511 450. ~d! (4,
23) rolls at t513 900. ~e! Distorted rolls att514 250. ~f! (5,0)
rolls at t516 000. In this case the final state of (5,0) rolls is stab
01630
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this has the consequence that of the rolls permitted in
computational box, the first to become stabilized asv is
increased are not aligned withVh . In order to confirm this
prediction, we choosea253 and perform a set of simula
tions with an initial pattern of (5,0) rolls~i.e., rolls aligned
with Vh). For small values ofv, we observe the Ku¨ppers-

.

FIG. 7. Nonlinear evolution of mode amplitudes in Eq.~5!, cor-
responding to Fig. 6. Instability of the initial (3,4) roll pattern t
(4,23) rolls manifests itself att'11 400. These rolls are ulti-
mately replaced by stable (5,0) rolls.

FIG. 8. Evolution ofw in Eq. ~5! for v50.4 anda253. ~a!
(5,0) rolls at t50. ~b! Perturbed (5,0) rolls att5550. ~c! Wavy
rolls at t5700. ~d! Rectangular pattern att5750. ~e! Wavy (4,3)
rolls at t5800. ~f! Stable (4,3) rolls att51000.
1-11
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Lortz instability, leading to an ever-repeating cycle similar
that illustrated in Fig. 5. However, whenv is sufficiently
large, the result is qualitatively different, since some ro
become stable—the first rolls to be stabilized turn out to
the (4,3) rolls. In Fig. 8 we show the pattern evolution wh
v50.4, during which the (5,0) rolls are ultimately replac
by stable (4,3) rolls, and there is no Ku¨ppers-Lortz cycle. As
v is increased further~i.e., above'0.515), the (5,0) rolls
themselves become stable. These results are summariz
Table II, which shows the values ofv for which the (5,0)
and (4,3) rolls are stable according to our analytical a
numerical results: asv is increased from zero, (5,0)-rolls ar
initially unstable, but become stable whenv exceeds some
threshold. Rolls in any other orientation are initially u
stable, then stabilize, then become unstable once more,
finally cease to exist asv is increased@cf. Fig. 2~b!#.

B. Finite Prandtl number

We now turn to finite-Prandtl-number simulations of Eq
~1! and ~2! to illustrate the influence of the small-angle a
modulational instabilities on the convection pattern.
course, these instabilities do not arise in isolation and in
process we also observe the more familiar skewed-varic
instability that is known to arise at finite Prandtl numbe
@21,22#. Since many of our simulations produce qualitative
similar results, we illustrate them first with two sets of sim
lations, carried out for Pr52, and corresponding to a Taylo
number of 1600. The parameter values are then:a0
520.398, a1520.3, a251.0, a358.273, a4523.670,
a552.447, a6520.918, andt51.034. We also setr 51
ande50.3. Each simulation has an initial state of (5,0) ro
with a small random perturbation.

Whenv50, rolls are stable to the finite-angle form of th
Küppers-Lortz instability, but unstable to the small-angle
stability of Sec. IV A. Figure 9 shows the dominant mo
amplitudes in this simulation, and Fig. 10 shows the cor
sponding evolution of the pattern. Initially the (5,1) and (
21) roll perturbations grow together, corresponding to

FIG. 9. Nonlinear evolution of the dominant mode amplitudes
Eqs.~1! and~2!, whenv50. The initial (5,0) rolls are unstable t
(5,61) modes, which grow at almost identical rates, until even
ally ~at t5125), one perturbation wins, and a pattern of (5,1) ro
is obtained. These rolls are themselves unstable, and are replac
turn by (5,2) rolls and (4,3) rolls.
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modesA1 andA2 in the theory of Sec. IV A, although nei
ther has a critical wave number here. Eventually the (5
mode dominates and a pattern of (5,1) rolls ensues. T
pattern is also unstable and is replaced in turn by (5,2)
then by (4,3) rolls. The (4,3) rolls are similarly unstable, th
time to perturbations in the form of the (3,4) and (5,
modes, This example can be related directly to the anal
of Sec. IV A, since both the initial rolls and one of the pe
turbing rolls have a critical wave number. Here, in the no
tion of that section,k5 4

5 and l 5 3
5 . The perturbation wave

vectors differ from the wave vector of the initial rolls b
(m,n)5(2 1

5 , 1
5 ). As in our infinite-Prandtl-number simula

tions atv50, the orientation of the roll pattern continues
precess about the vertical, although the angle between
cessive rolls is much smaller here, leading to a gener
wavier pattern, apparent in Fig. 10. Note that we are su
ciently far above onset that the participating rolls do n
necessarily have critical wave numbers@e.g., the wave num-
ber of the (5,2) rolls is 1.077].

For nonzerov, some roll patterns become stabilized
these small-angle perturbations for sufficiently largev, as
they did in the infinite-Prandtl number case to the Ku¨ppers-
Lortz instability, e.g., atv51.1 the (4,3) rolls are stable. In
a simulation from an initial state of (5,0) rolls, again atv
51.1 the pattern is initially replaced by (5,1) rolls; but the

-

d in

FIG. 10. Evolution ofw in Eqs. ~1! and ~2! corresponding to
Fig. 9.~a! (5,0) rolls att50. ~b! Perturbed (5,0) rolls att5110. ~c!
Wavy rolls att5120. ~d! Pattern att5150. ~e! Pattern att5170.
~f! Wavy (5,2) rolls att5180.
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rolls are unstable to small-angle perturbations, and eve
ally a stable (4,3) roll pattern is obtained. The evolution
this pattern is shown in Fig. 11. Note that the final stea
pattern of rolls is not aligned withVh . At even higher values
of v, the stable pattern is in closer alignment withVh .

In our final set of simulations, we illustrate the effects
the modulational instability identified in Sec. V; to do so, w
reduce Pr in order to satisfy Eq.~42!. In all our simulations
with v50, we find that rolls become unstable to the sma
angle instability before the predicted modulational instabi
can be observed~although we could clearly find this insta
bility by restricting the perturbations to be parallel to t
original rolls!. The reason for this is the faster growth rate
the small-angle instability identified in Eq.~29!. In order to
eliminate the small-angle instability, the value ofv is in-
creased; we find a value ofv53 to be sufficient. Results ar
shown for Pr50.6, r 51 ande50.5 with an initial pattern
consisting of (5,0)-rolls. For a Taylor number of 400~so that
a052931023, a1520.5, a251.0, a3512.367, a4
5213.333, a558.889, a6520.999, andt51.546), we
find that, while the (5,0) rolls are initially unstable to th
skewed-varicose instability, this pattern itself becom
modulated in a manner analogous to that of the o
dimensional instability shown in Fig. 12~a!. Eventually a
one-dimensional, steady, modulated roll pattern, shown

FIG. 11. Evolution ofw in Eqs.~1! and~2! for v51.1. ~a! (5,0)
rolls at t50. ~b! Wavy rolls att530. ~c! (5,1) rolls att550. ~d!
Wavy (5,1) rolls att590. ~e! Distorted rolls att5100. ~f! Stable
(4,3) rolls att5110.
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Fig. 12~b!, is obtained. At higher values of the vertical com
ponent of the rotation vector, a modulated skewed-varic
pattern@cf. Fig. 12~a!# is the final steady state of the system

VII. CONCLUSIONS

In this paper we have studied the competing influence
the vertical and horizontal components of the rotation vec
on the problem of pattern formation in thermal convectio
Although this problem is of considerable geophysical r
evance, it has received very little investigation in comparis
with the case of a purely vertical rotation vector.

The horizontal componentVh of the rotation vector
breaks the orientational degeneracy of the problem, so t
in general, convection occurs in the form of rolls rather th
more complicated patterns such as squares or hexagons
rolls are subject to a competition between the Ku¨ppers-Lortz
instability that leads to a continual precession of the r
axes, and the alignment instability that leads to a prefere
for rolls aligned withVh . This competition can be analyze
within the framework of weakly nonlinear amplitude equ
tions, provided thatuVhu is small.

When the effects of the large-scale mean flow are ne
gible ~e.g., in the limit of infinite Prandtl number!, the prob-
lem can be studied with a single model equation~5!. When
the vertical rotation rateVv is small, rolls are susceptible
only to the alignment instability. A band of possible ro
alignments exists, and within this band there is a sma
band of stable rolls. For largerVv , the heteroclinic cycle
associated with the Ku¨ppers-Lortz instability is broken, pro
vided thatuVhu is sufficiently large. There is then a band
stable rolls, but this band need not include rolls aligned w
Vh ; stable rolls can be aligned at an angle toVh , so that the
effects of the competing instabilities balance.

When the Prandtl number is finite, the problem is comp
cated by the presence of a neutral large-scale flow
greatly increases the range of potential instabilities of ro
These large-scale instabilities include the small-angle fo
of the Küppers-Lortz instability@8,13#, the skewed-varicose
instability @19#, and a one-dimensional amplitude
modulation instability@15,16#. The small-angle instability is
not prevented byVh , in the sense that almost all rolls withi
the band of existence remain unstable. Only a very nar
range of small-amplitude rolls near the edge of this band
be stable. We have not discussed in detail in this paper

FIG. 12. Planforms of~a! a modulated skewed-varicose patte
and ~b! a one-dimensionally modulated roll pattern. Parameter v
ues are given in the text.
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skewed-varicose instability, since its behavior is similar
the nonrotating case@18#. The one-dimensional instability i
also unaffected byVh .

We have conducted a sequence of numerical experim
to illustrate these various instabilities and to study their n
linear development. The numerical results are consistent
the analytical predictions for the stability and instability
y

ns

01630
ts
-
th

the rolls. In all cases, the instabilities evolve to a new st
consisting of pure rolls of a different alignment or a hete
clinic cycle between roll states; there is no evidence of m
complex steady-state patterns, such as wavy rolls. Howe
more complicated patterns are observed if the box siz
increased, or if the simulations are carried out further fro
onset@8,12,18#.
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@1# G. Küppers and D. Lortz, J. Fluid Mech.35, 609 ~1969!.
@2# T. Clune and E. Knobloch, Phys. Rev. E47, 2536~1993!.
@3# M. Auer, F.H. Busse, and R.M. Clever, J. Fluid Mech.301, 371

~1995!.
@4# F.H. Busse and M. Kropp, ZAMP43, 28 ~1992!.
@5# S. Chandrasekhar,Hydrodynamic and Hydromagnetic Stabilit

~Oxford University Press, Oxford, 1961!.
@6# F.H. Busse, Z. Naturforsch. A37a, 752 ~1982!.
@7# M. Kropp and F.H. Busse, Geophys. Astrophys. Fluid Dyn.61,

127 ~1991!.
@8# Y. Ponty, T. Passot, and P.L. Sulem, Phys. Rev. E56, 4162

~1997!.
@9# P. Manneville, J. Phys.44, 759 ~1983!.

@10# M. Neufeld, R. Friedrich, and H. Haken, Z. Phys. B: Conde
Matter 92, 243 ~1993!.

@11# S.M. Cox, SIAM ~Soc. Ind. Appl. Math.! J. Appl. Math.58,
.

1338 ~1998!.
@12# A. Roxin and H. Riecke, Phys. Rev. E65, 046219~2002!.
@13# S.M. Cox and P.C. Matthews, J. Fluid Mech.403, 153 ~2000!.
@14# W. Eckhaus,Studies in Non-Linear Stability Theory~Springer,

New York, 1965!.
@15# P.C. Matthews and S.M. Cox, Nonlinearity13, 1293~2000!.
@16# S.M. Cox and P.C. Matthews, Physica D149, 210 ~2001!.
@17# M.R.E. Proctor, Phys. Lett. A292, 181 ~2001!.
@18# S.L. Pollicott, Ph.D. thesis, University of Nottingham, 200

~unpublished!.
@19# A. Zippelius and E.D. Siggia, Phys. Fluids26, 2905~1983!.
@20# S.M. Cox and P.C. Matthews, J. Comput. Phys.176, 430

~2002!.
@21# F.H. Busse and R.M. Clever, J. Fluid Mech.91, 319 ~1979!.
@22# F.H. Busse and E.W. Bolton, J. Fluid Mech.146, 115 ~1984!.
1-14


